
1

TeamSpeak 3 Server
SDK Developer Manual

Revision 2011-09-08 16:05:04

Copyright © 2007-2011 TeamSpeak Systems GmbH

Table of Contents
Copyright .. 2

License agreement .. 2
Introduction ... 5
System requirements ... 5

Usage ... 5
Calling Server lib functions .. 6
Initializing ... 6

The callback mechanism .. 7
Querying the library version ... 8
Shutting down .. 9
Error handling .. 9
Query virtual servers, clients and channels .. 10
Create and stop virtual servers .. 14
Retrieve and store information .. 16

Client information ... 16
Query client information .. 16
Setting client information ... 19
Whisper lists .. 20

Channel information .. 21
Query channel information ... 21
Setting channel information .. 24

Server information .. 25
Query server information .. 25
Setting server information .. 27

Bandwidth information ... 28
Channel and client manipulation .. 30

Creating a new channel .. 30
Deleting a channel .. 31
Moving a channel ... 31
Moving clients .. 32

Events ... 33
Custom encryption .. 40

Miscellaneous functions ... 41
FAQ ... 42
Revision history .. 44
Index .. 45

TeamSpeak 3 Server
SDK Developer Manual

2

Copyright
Copyright © 2007-2011 TeamSpeak Systems GmbH. All rights reserved.

TeamSpeak Systems GmbH
 Soiernstrasse 1
 82494 Krün
 Germany

Visit TeamSpeak-Systems on the web at www.teamspeak.com [http://www.teamspeak.com]

License agreement
TeamSpeak 3

LICENSE AGREEMENT

October 25th, 2007

THIS IS A LEGAL AGREEMENT between "you," the company or end user of TeamSpeak 3 brand software, and TeamSpeak
Systems GmbH, a Krün, Germany company hereafter referred to as "TeamSpeak Systems".

Use of the software you are about to install indicates your acceptance of these terms. You also agree to accept these terms by
so indicating at the appropriate screen, prior to the download or installation process. As used in this Agreement, the capitalized
term "Software" means the TeamSpeak 3 voice over IP (VoIP) communication software together with any and all enhance-
ments, upgrades, and updates that may be provided to you in the future by TeamSpeak Systems. IF YOU DO NOT AGREE
TO THESE TERMS AND CONDITIONS, YOU SHOULD SO INDICATE BY CONTACTING TEAMSPEAK SYSTEMS
AND PROMPTLY DISCONTINUE THE INSTALLATION PROCESS AND USE OF THIS SOFTWARE.

Ownership

The Software and any accompanying documentation are owned by TeamSpeak Systems and ownership of the Software shall
at all times remain with TeamSpeak Systems. Copies are provided to you only to allow you to exercise your rights under this
Agreement. This Agreement does not constitute a sale of the Software or any accompanying documentation, or any portion
thereof. Without limiting the generality of the foregoing, you do not receive any rights to any patents, copyrights, trade secrets,
trademarks or other intellectual property rights relating to or in the Software or any accompanying documentation. All rights
not expressly granted to you under this Agreement are reserved by TeamSpeak Systems.

Grant of License Applicable To TeamSpeak 3

Subject to the terms and conditions set out in this Agreement, TeamSpeak Systems grants you a limited, nonexclusive, non-
transferable and nonsublicensable right to use the Software called "TeamSpeak 3" solely in accordance with the following
terms and conditions:

1. Use of TeamSpeak 3. You may use TeamSpeak 3 on multiple computers owned, leased or rented by you, your company, or
business entity; however, you are the only individual, company, or business entity with the right to use your licensed copy(ies)
of TeamSpeak 3. All copies of TeamSpeak 3 must include TeamSpeak Systems' copyright notice.

2. Distribution Prohibited. You may not distribute copies of TeamSpeak 3 for use by anyone other than you, your company,
or business entity. Distribution of TeamSpeak 3 by you to third parties is hereby expressly prohibited.

3. Fees. As of the date listed above for this License Agreement, TeamSpeak 3 is in a "pre-release" stage. Fees and licensing costs
will be determined when the final version of the product is released or an agreed upon commencement date for commercial
use of the Software is initiated.

http://www.teamspeak.com
http://www.teamspeak.com

TeamSpeak 3 Server
SDK Developer Manual

3

4. Termination. TeamSpeak Systems may terminate your TeamSpeak 3 license at any time, for any reason or no reason.
TeamSpeak Systems may also terminate your TeamSpeak 3 license if you breach any of the terms and conditions set forth
in this Agreement. Upon termination, you shall immediately destroy all copies of TeamSpeak 3 and any accompanying files
or documentation in your possession, custody or control.

5. Support. TeamSpeak Systems will provide you with support services related to TeamSpeak 3 for a period that begins on
the date TeamSpeak 3 is delivered to you, and ends upon the termination of this Agreement.

6. Upgrades. TeamSpeak Systems will provide you with upgrades to TeamSpeak 3 for a period that begins on the date Team-
Speak 3 is delivered to you. Such upgrades will be released only by TeamSpeak Systems for the purpose of improving Team-
Speak 3 software. TeamSpeak Systems has no obligation to provide you with any upgrades that are not released for general
distribution to TeamSpeak Systems' other licensees. Nothing in this Agreement shall be construed to obligate TeamSpeak
Systems to provide upgrades to you under any circumstances.

Prohibited Conduct

You represent and warrant that you will not violate any of the terms and conditions set forth in this Agreement and that:

You will not, and will not permit others to: (i) reverse engineer, decompile, disassemble, derive the source code of, modify, or
create derivative works from the Software; or (ii) use, copy, modify, alter, or transfer, electronically or otherwise, the Software
or any of the accompanying documentation except as expressly permitted in this Agreement; or (iii) redistribute, sell, rent,
lease, sublicense, or otherwise transfer rights to the Software whether in a stand-alone configuration or as incorporated with
other software code written by any party except as expressly permitted in this Agreement.

You will not use the Software to engage in or allow others to engage in any illegal activity.

You will not engage in use of the Software that will interfere with or damage the operation of the services of third parties by
overburdening/disabling network resources through automated queries, excessive usage or similar conduct.

You will not use the Software to engage in any activity that will violate the rights of third parties, including, without limitation,
through the use, public display, public performance, reproduction, distribution, or modification of communications or materials
that infringe copyrights, trademarks, publicity rights, privacy rights, other proprietary rights, or rights against defamation of
third parties.

You will not transfer the Software or utilize the Software in combination with third party software authored by you or others
to create an integrated software program which you transfer to unrelated third parties.

Upgrades, Updates And Enhancements

All upgrades, updates or enhancements of the Software shall be deemed to be part of the Software and will be subject to
this Agreement.

Disclaimer of Warranty

THE SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
PLIED, INCLUDING, WITHOUT LIMITATION, THE WARRANTIES THAT IT IS FREE OF DEFECTS, VIRUS FREE,
ABLE TO OPERATE ON AN UNINTERRUPTED BASIS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE
OR NON-INFRINGING. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL PART OF THIS LI-
CENSE AND AGREEMENT. NO USE OF THE SOFTWARE IS AUTHORIZED HEREUNDER EXCEPT UNDER THIS
DISCLAIMER.

Limitation of Liability

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT WILL TEAMSPEAK SYSTEMS
BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF

TeamSpeak 3 Server
SDK Developer Manual

4

THE USE OF OR INABILITY TO USE THE SOFTWARE, INCLUDING, WITHOUT LIMITATION, DAMAGES FOR
LOST PROFITS, LOSS OF GOODWILL, WORK STOPPAGE, COMPUTER FAILURE OR MALFUNCTION, OR ANY
AND ALL OTHER COMMERCIAL DAMAGES OR LOSSES, EVEN IF ADVISED OF THE POSSIBILITY THERE-
OF, AND REGARDLESS OF THE LEGAL OR EQUITABLE THEORY (CONTRACT, TORT OR OTHERWISE) UPON
WHICH THE CLAIM IS BASED. IN ANY CASE, TEAMSPEAK SYSTEMS' COLLECTIVE LIABILITY UNDER ANY
PROVISION OF THIS LICENSE SHALL NOT EXCEED IN THE AGGREGATE THE SUM OF THE FEES (IF ANY)
YOU PAID FOR THIS LICENSE.

Legends and Notices

You agree that you will not remove or alter any trademark, logo, copyright or other proprietary notices, legends, symbols or
labels in the Software or any accompanying files or documentation.

Term and Termination

This Agreement is effective upon your acceptance as provided herein and payment of the applicable license fees (if any), and
will remain in force until terminated. You may terminate the licenses granted in this Agreement at any time by contacting
TeamSpeak Systems in writing, and destroying the Software and any accompanying files or documentation, together with any
and all copies thereof. The licenses granted in this Agreement will terminate automatically if you breach any of its terms or
conditions or any of the terms or conditions of any other agreement between you and TeamSpeak Systems. Upon termination,
you shall immediately destroy the original and all copies of the Software and any accompanying documentation, or return
them to TeamSpeak Systems.

Software Suggestions

TeamSpeak Systems welcomes suggestions for enhancing the Software and any accompanying documentation that may re-
sult in computer programs, reports, presentations, documents, ideas or inventions relating or useful to TeamSpeak Systems'
business. You acknowledge that all title, ownership rights, and intellectual property rights concerning such suggestions shall
become the exclusive property of TeamSpeak Systems and may be used for its business purposes in its sole discretion without
any payment or accounting to you.

Miscellaneous

This Agreement constitutes the entire agreement between the parties concerning the Software, and may be amended only by a
writing signed by both parties. This Agreement shall be governed by the laws of Krün, Germany, excluding its conflict of law
provisions. All disputes relating to this Agreement are subject to the exclusive jurisdiction of the courts within Germany and
you expressly consent to the exercise of personal jurisdiction in the courts of Germany in connection with any such dispute.
This Agreement shall not be governed by the United Nations Convention on Contracts for the International Sale of Goods. If
any provision in this Agreement should be held illegal or unenforceable by a court of competent jurisdiction, such provision
shall be modified to the extent necessary to render it enforceable without losing its intent, or severed from this Agreement if
no such modification is possible, and other provisions of this Agreement shall remain in full force and effect. A waiver by
either party of any term or condition of this Agreement or any breach thereof, in any one instance, shall not waive such term
or condition or any subsequent breach thereof.

TeamSpeak 3 Server
SDK Developer Manual

5

Introduction
TeamSpeak 3 is a scalable Voice-Over-IP application consisting of client and server software. TeamSpeak is generally re-
garded as the leading VoIP system offering a superior voice quality, scalability and usability.

The cross-platform Software Development Kit allows the easy integration of the TeamSpeak client and server technology
into own applications.

This document describes server-side programming with the TeamSpeak 3 SDK. The SDK user will be able to create a custom
TeamSpeak 3 server binary using the provided server API and library.

System requirements
For developing third-party clients with the TeamSpeak 3 Server Lib the following system requirements apply:

• Windows

Windows 2000, XP, Vista (32- and 64-bit)

• Mac OS X

Mac OS X 10.4, 10.5 on Intel and PowerPC

• Linux

Any recent Linux distribution with libstdc++ 6. Both 32- and 64-bit are supported.

Important

The calling convention used in the functions exported by the shared TeamSpeak 3 SDK libaries is cdecl. You
must not use another calling convention, like stdcall on Windows, when declaring function pointers to the Team-
Speak 3 SDK libraries. Otherwise stack corruption at runtime may occur.

Usage
All the required files are located in the bin directory of the TeamSpeak 3 SDK distribution.

Important

The license file licensekey.dat needs to be located in the same folder as your server executable.

If no license key is present, the server will run with the following limitations:

• Only one server process per machine

• Only one virtual server per process

• Only 32 slots

For more detailed information about licensing of TeamSpeak 3 servers or to obtain a license, please contact
<sales@tritoncia.com>.

TeamSpeak 3 Server
SDK Developer Manual

6

Calling Server lib functions
Server Lib functions follow a common pattern. They always return an error code or ERROR_ok on success. If there is a result
variable, it is always the last variable in the functions parameters list.

ERROR ts3server_FUNCNAME(arg1, arg2, ..., &result);

Result variables should only be accessed if the function returned ERROR_ok. Otherwise the state of the result variable is
undefined.

In those cases where the result variable is a basic type (int, float etc.), the memory for the result variable has to be declared
by the caller. Simply pass the address of the variable to the Server Lib function.

int result;

if(ts3server_XXX(arg1, arg2, ..., &result) == ERROR_ok) {
 /* Use result variable */
} else {
 /* Handle error, result variable is undefined */
}

If the result variable is a pointer type (C strings, arrays etc.), the memory is allocated by the Server Lib function. In that case,
the caller has to release the allocated memory later by using ts3server_freeMemory. It is important to only access and
release the memory if the function returned ERROR_ok. Should the function return an error, the result variable is uninitialized,
so freeing or accessing it could crash the application.

char* result;

if(ts3server_XXX(arg1, arg2, ..., &result) == ERROR_ok) {
 /* Use result variable */
 ts3server_freeMemory(result); /* Release result variable */
} else {
 /* Handle error, result variable is undefined. Do not access or release it. */
}

Note

Server Lib functions are thread-safe. It is possible to access the Server Lib from several threads at the same time.

Initializing
When starting the server application, initialize the Server Lib with

unsigned int ts3server_initServerLib(functionPointers, usedLogTypes, logFileFolder);

const struct ServerLibFunctions* functionPointers;
int usedLogTypes;
const char* logFileFolder;

Note

This function must not be called more than once.

TeamSpeak 3 Server
SDK Developer Manual

7

Parameters

• functionPointers

Callback function pointers. See below.

• usedLogTypes

Defines the log output types. The Server Lib can output log messages to a file (located in the logs directory relative to
the server executable), to stdout or to user defined callbacks. If user callbacks are activated, the onUserLoggingMes-
sageEvent event needs to be implemented.

Available values are defined by the enum LogTypes (see public_definitions.h):

enum LogTypes {
 LogType_NONE = 0x0000,
 LogType_FILE = 0x0001,
 LogType_CONSOLE = 0x0002,
 LogType_USERLOGGING = 0x0004,
 LogType_NO_NETLOGGING = 0x0008,
 LogType_DATABASE = 0x0010,
};

Multiple log types can be combined with a binary OR. If only LogType_NONE is used, local logging is disabled.

Note

Logging to console can slow down the application on Windows. Hence we do not recommend to log to the
console on Windows other than in debug builds.

Note

LogType_NO_NETLOGGING is no longer used. Previously this controlled if the Server Lib would send
warning, error and critical log entries to a webserver for analysis. As netlogging does not occur anymore, this
flag has no effect anymore.

LogType_DATABASE is unused in SDK builds.

• logFileFolder

Location where the logfiles produced if file logging is enabled will be saved to. Pass NULL for the default behaviour, which
is to use a folder called logs in the current working directory.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

The callback mechanism
The communication from the Server Lib to the server application takes place using callbacks. The server application has to
define a series of function pointers using the struct ServerLibFunctions (see serverlib.h). These callbacks are used to let
the server application hook into the library and receive notifaction on certain actions.

A callback example in C:

static void my_onClientConnected_callback(uint64 serverID, anyID clientID, uint64 channelID,
 unsigned int* removeClientError) {
 printf("Client %u connected on virtual server %u joining channel %u", clientID, serverID, channelID);
}

TeamSpeak 3 Server
SDK Developer Manual

8

C++ developers can also use static member functions for the callbacks.

Before calling ts3server_initServerLib, create an instance of struct ServerLibFunctions, initialize all function point-
ers with NULL and point the structs function pointers to your implemented callback functions:

unsigned int error;

/* Create struct */
ServerLibFunctions slFuncs;

/* Initialize all function pointers with NULL */
memset(&slFuncs, 0, sizeof(struct ServerLibFunctions));

/* Assign those function pointers you implemented */
slFuncs.onClientConnected = my_onClientConnected_callback;
slFuncs.onClientDisconnected = my_onClientDisconnected_callback;
slFuncs.onClientMoved = my_onClientMoved_callback;
slFuncs.onChannelCreated = my_onChannelCreated_callback;
slFuncs.onChannelEdited = my_onChannelEdited_callback;
slFuncs.onChannelDeleted = my_onChannelDeleted_callback;
slFuncs.onServerTextMessageEvent = my_onServerTextMessageEvent_callback;
slFuncs.onChannelTextMessageEvent = my_onChannelTextMessageEvent_callback;
slFuncs.onUserLoggingMessageEvent = my_onUserLoggingMessageEvent_callback;
slFuncs.onAccountingErrorEvent = my_onAccountingErrorEvent;

/* Initialize library with callback function pointers */
error = ts3server_initServerLib(&slFuncs, LogType_FILE | LogType_CONSOLE);
if(error != ERROR_ok) {
 printf("Error initializing serverlib: %d\n", error);
 (...)
}

Important

As long as you initialize unimplemented callbacks with NULL, the Server Lib won't attempt to call those function
pointers. However, if you leave unimplemented callbacks undefined, the Server Lib will crash when trying to
call them.

The individual callbacks are described in the chapter Events.

Querying the library version
The Server Lib version can be queried with

char* ts3server_getServerLibVersion(result);

char** result;

Parameters

• result

Address of a variable that receives the serverlib version string, encoded in UTF-8.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h. If an error occured, the result
string is uninitialized and must not be accessed.

TeamSpeak 3 Server
SDK Developer Manual

9

Caution

The result string must be released using ts3server_freeMemory. If an error has occured, the result string
is uninitialized and must not be released.

Example code to query the Server Lib version:

unsigned int error;
char* version;
error = ts3server_getServerLibVersion(&version);
if(error != ERROR_ok) {
 printf("Error querying serverlib version: %d\n", error);
 return;
}
printf("Server library version: %s\n", version); /* Print version */
ts3server_freeMemory(version); /* Release string */

Shutting down
Before exiting the application, the Server Lib should be shut down with

unsigned int ts3server_destroyServerLib();

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

Any call to Server Lib functions after shutting down has undefined results.

Caution

Never destroy the Server Lib from within a callback function.

Error handling
Each Server Lib function returns either ERROR_ok on success or an error value as defined in public_errors.h if the
function fails.

The returned error codes are organized in groups, where the first byte defines the error group and the second the count within
the group: The naming convention is ERROR_<group>_<error>, for example ERROR_client_invalid_id.

Example:

unsigned int error;
char* welcomeMsg;

/* welcomeMsg memory is allocated if error is ERROR_ok */
error = ts3server_getServerVariableAsString(serverID, VIRTUALSERVER_WELCOMEMESSAGE, &welcomeMsg);
if(error != ERROR_ok) {
 /* Handle error */
 return;
}
/* Use welcomeMsg... */
ts3server_freeMemory(welcomeMsg); /* Release memory *only* if function did not return an error */

TeamSpeak 3 Server
SDK Developer Manual

10

Note

Result variables should only be accessed if the function returned ERROR_ok. Otherwise the state of the result
variable is undefined.

Important

Some Server Lib functions dynamically allocate memory which has to be freed by the caller using
ts3server_freeMemory. It is important to only access and release the memory if the function returned
ERROR_ok. Should the function return an error, the result variable is uninitialized, so freeing or accessing it
could crash the application.

See the section Calling Server Lib functions for additional notes and examples.

A printable error string for a specific error code can be queried with

unsigned int ts3server_getGlobalErrorMessage(errorCode, error);

unsigned int errorCode;
char** error;

Parameters

• errorCode

The error code returned from all Server Lib functions.

• error

Address of a variable that receives the error message string, encoded in UTF-8 format. Unless the return value of the function
is not ERROR_ok, the string should be released with ts3server_freeMemory.

Example:

unsigned int error;
char* version;

error = ts3server_getServerLibVersion(&version); /* Calling some Server Lib function */
if(error != ERROR_ok) {
 char* errorMsg;
 if(ts3server_getGlobalErrorMessage(error, &errorMsg) == ERROR_ok) { /* Query printable error */
 printf("Error querying client ID: %s\n", errorMsg);
 ts3server_freeMemory(errorMsg); /* Release memory only if function succeeded */
 }
}

Query virtual servers, clients and channels
A list of all virtual servers can be queried with:

unsigned int ts3server_getVirtualServerList(result);

uint64** result;

TeamSpeak 3 Server
SDK Developer Manual

11

Parameters

• result

Address of a variable which receives a NULL-terminated array of server IDs. Unless an error occured, the array should be
released with ts3server_freeMemory.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h. If an error has occured, the
result array is uninitialized and must not be released.

Note

The default virtual server has an ID of 1.

A list of all clients currently online on the specified virtual server can be queried with:

unsigned int ts3server_getClientList(serverID, result);

uint64 serverID;
anyID** result;

Parameters

• serverID

ID of the virtual server on which the client list is requested.

• result

Address of a variable which receives a NULL-terminated array of client IDs. Unless an error occured, the array should be
released with ts3server_freeMemory.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h. If an error has occured, the
result array is uninitialized and must not be released.

A list of all channels currently available on the specified virtual server can be queried with:

unsigned int ts3server_getChannelList(serverID, result);

uint64 serverID;
uint64** result;

Parameters

• serverID

ID of the virtual server on which the channel list is requested.

TeamSpeak 3 Server
SDK Developer Manual

12

• result

Address of a variable which receives a NULL-terminated array of channel IDs. Unless an error occured, the array should
be released with ts3server_freeMemory.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h. If an error has occured, the
result array is uninitialized and must not be released.

To get a list of all clients currently member of the specified channel:

unsigned int ts3server_getChannelClientList(serverID, channelID, result);

uint64 serverID;
uint64 channelID;
anyID** result;

Parameters

• serverID

ID of the virtual server on which the list of clients is requested.

• channelID

ID of the specified channel.

• result

Address of a variable which receives a NULL-terminated array of client IDs. Unless an error occured, the array should be
released with ts3server_freeMemory.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h. If an error has occured, the
result array is uninitialized and must not be released.

Query the channel the specified client has currently joined:

unsigned int ts3server_getChannelOfClient(serverID, clientID, result);

uint64 serverID;
anyID clientID;
uint64* result;

Parameters

• serverID

ID of the virtual server on which the channel is requested.

TeamSpeak 3 Server
SDK Developer Manual

13

• channelID

ID of the specified client.

• result

Address of a variable which receives the ID of the channel the specified client has currently joined.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

Get the parent channel of a given channel:

unsigned int ts3server_getParentChannelOfChannel(serverID, channelID, result);

uint64 serverID;
uint64 channelID;
uint64* result;

Parameters

• serverID

ID of the virtual server on which the parent channel is requested.

• channelID

ID of the channel whose parent channel is requested.

• result

Address of a variable which receives the ID of the parent channel.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

Example to print a list of all channels on a virtual server:

uint64 *channels;

if(ts3server_getChannelList(serverID, &channels) == ERROR_ok) {
 for(int i=0; channels[i] != NULL; i++) {
 printf("Channel ID: %u\n", channels[i]);
 }
 ts3server_freeMemory(channels);
}

Example to print all clients who are member of channel with ID 123:

uint64 channelID = 123; /* ID in our example */
anyID *clients;

if(ts3server_getChannelClientList(serverID, channelID, &clients) == ERROR_ok) {
 for(int i=0; clients[i] != NULL; i++) {
 printf("Client ID: %u\n", clients[i]);
 }

TeamSpeak 3 Server
SDK Developer Manual

14

 ts3server_freeMemory(clients);
}

Create and stop virtual servers
A new virtual server can be created within the current server process by calling:

unsigned int ts3server_createVirtualServer(serverPort, serverIp, serverName,
serverKeyPair, serverMaxClients, result);

unsigned int serverPort;
const char* serverIp;
const char* serverName;
const char* serverKeyPair;
unsigned int serverMaxClients;
uint64* result;

Parameters

• serverPort

UDP port to be used for the new virtual server. The default TeamSpeak 3 port is UDP 9987.

• serverIp

IP to bind the virtual server to. Pass “0.0.0.0” to bind the virtual server to all IP addresses.

• serverName

Name of the new virtual server. This can be later accessed through the virtual server property VIRTUALSERVER_NAME.

• serverKeyPair

Unique keypair of this server. The first time you start this virtual server, pass an empty string, query the keypair with
ts3server_getVirtualServerKeyPair, then save the keypair locally and pass it the next time as parameter to
this function.

• serverMaxClients

Maximum number of clients (“slots”) which can simultaneously be connected to this virtual server.

• result

Address of a variable which receives the ID of the created virtual server.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h. On success, the created virtual
server will be automatically started.

Caution

You should not create a virtual server with an empty keypair except than the first time. If the server should crash,
license problems might result when using “throw-away” keypairs, as the license systems might consider you are
running more virtual servers than you actually do.

TeamSpeak 3 Server
SDK Developer Manual

15

Instead query the keypair the first time the virtual server was started, save it to a file and reuse it when creating
a new virtual server. This way licensing issues will not occur.

See the server sample which is included in the TeamSpeak 3 SDK for an example on how to save and restore
keypairs.

Note

The TeamSpeak 3 server uses UDP. Support for TCP might be added in the future.

To query the keypair of a virtual server, use:

unsigned int ts3server_getVirtualServerKeyPair(serverID, result);

uint64 serverID;
char** result;

Parameters

• serverID

ID of the virtual server for which the keypair is queried.

• result

Address of a variable that receives a string with the keypair of this virtual server. Save the keypair and pass it the next time
this virtual server is created as parameter to ts3server_createVirtualServer.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h. If an error has occured, the
result string is uninitialized and must not be released.

A virtual server can be stopped with:

unsigned int ts3server_stopVirtualServer(serverID);

uint64 serverID;

Parameters

• serverID

ID of the virtual server that should be stopped.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

TeamSpeak 3 Server
SDK Developer Manual

16

Retrieve and store information
The Server Lib stores various pieces of information, which is made available to the custom server. This chapter covers how
to query and store data in the Server Lib.

All strings passed to and from the Server Lib need to be encoded in UTF-8 format.

Client information

Query client information

Information about the clients currently connected to this virtual server can be retrieved and modified. To query client related
information, use one of the following functions. The client is identified by the parameter clientID. The parameter flag
is defined by the enum ClientProperties.

unsigned int ts3server_getClientVariableAsInt(serverID, clientID, flag, result);

uint64 serverID;
anyID clientID;
ClientProperties flag;
int* result;

unsigned int ts3server_getClientVariableAsString(serverID, clientID, flag, result);

uint64 serverID;
anyID clientID;
ClientProperties flag;
char** result;

Parameters

• serverID

The ID of the virtual server on which the client property is queried.

• clientID

ID of the client whose property is queried.

• flag

Client propery to query, see below.

• result

Address of a variable that receives the result value as int or string, depending on which function is used. In case of a string,
memory must be released using ts3server_freeMemory, unless an error occured.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h. For the string version: If an
error has occured, the result string is uninitialized and must not be released.

TeamSpeak 3 Server
SDK Developer Manual

17

The parameter flag specifies the type of queried information. It is defined by the enum ClientProperties:

enum ClientProperties {
 CLIENT_UNIQUE_IDENTIFIER = 0, //automatically up-to-date for any client "in view", can be used
 //to identify this particular client installation
 CLIENT_NICKNAME, //automatically up-to-date for any client "in view"
 CLIENT_VERSION, //for other clients than ourself, this needs to be requested
 //(=> requestClientVariables)
 CLIENT_PLATFORM, //for other clients than ourself, this needs to be requested
 //(=> requestClientVariables)
 CLIENT_FLAG_TALKING, //automatically up-to-date for any client that can be heard
 //(in room / whisper)
 CLIENT_INPUT_MUTED, //automatically up-to-date for any client "in view", this clients
 //microphone mute status
 CLIENT_OUTPUT_MUTED, //automatically up-to-date for any client "in view", this clients
 //headphones/speakers mute status
 CLIENT_OUTPUTONLY_MUTED //automatically up-to-date for any client "in view", this clients
 //headphones/speakers only mute status
 CLIENT_INPUT_HARDWARE, //automatically up-to-date for any client "in view", this clients
 //microphone hardware status (is the capture device opened?)
 CLIENT_OUTPUT_HARDWARE, //automatically up-to-date for any client "in view", this clients
 //headphone/speakers hardware status (is the playback device opened?)
 CLIENT_INPUT_DEACTIVATED, //only usable for ourself, not propagated to the network
 CLIENT_IDLE_TIME, //internal use
 CLIENT_DEFAULT_CHANNEL, //only usable for ourself, the default channel we used to connect
 //on our last connection attempt
 CLIENT_DEFAULT_CHANNEL_PASSWORD,//internal use
 CLIENT_SERVER_PASSWORD, //internal use
 CLIENT_META_DATA, //automatically up-to-date for any client "in view", not used by
 //TeamSpeak, free storage for sdk users
 CLIENT_IS_MUTED, //only make sense on the client side locally, "1" if this client is
 //currently muted by us, "0" if he is not
 CLIENT_IS_RECORDING, //automatically up-to-date for any client "in view"
 CLIENT_VOLUME_MODIFICATOR, //internal use
 CLIENT_ENDMARKER,
};

• CLIENT_UNIQUE_IDENTIFIER

String: Unique ID for this client. Stays the same after restarting the application, so you can use this to identify individual user.

• CLIENT_NICKNAME

Nickname used by the client

• CLIENT_VERSION

Application version used by this client.

• CLIENT_PLATFORM

Operating system used by this client.

• CLIENT_FLAG_TALKING

Set when the client is currently talking. Always available for visible clients.

• CLIENT_INPUT_MUTED

Indicates the mute status of the clients capture device. Possible values are defined by the enum MuteInputStatus.

• CLIENT_OUTPUT_MUTED

TeamSpeak 3 Server
SDK Developer Manual

18

Indicates the combined mute status of the clients playback and capture devices. Possible values are defined by the enum
MuteOutputStatus. Always available for visible clients.

• CLIENT_OUTPUTONLY_MUTED

Indicates the mute status of the clients playback device. Possible values are defined by the enum MuteOutputStatus. Always
available for visible clients.

• CLIENT_INPUT_HARDWARE

Set if the clients capture device is not available. Possible values are defined by the enum HardwareInputStatus.

• CLIENT_OUTPUT_HARDWARE

Set if the clients playback device is not available. Possible values are defined by the enum HardwareOutputStatus.

• CLIENT_INPUT_DEACTIVATED

Set when the capture device has been deactivated as used in Push-To-Talk. Possible values are defined by the enum Input-
DeactivationStatus. Only available to client, not propagated to the server.

• CLIENT_IDLE_TIME

Time the client has been idle.

• CLIENT_TYPE

Indicates if the given client is a normal TeamSpeak 3 client or a connection established by the ServerQuery application.

• CLIENT_DEFAULT_CHANNEL

CLIENT_DEFAULT_CHANNEL_PASSWORD

Default channel name and password used in the last ts3server_startConnection call. Only available for own
client.

• CLIENT_META_DATA

Not used by TeamSpeak 3, offers free storage for SDK users.

• CLIENT_IS_MUTED

Indicates a client has been locally muted with ts3server_requestMuteClients. Client-side only.

• CLIENT_IS_RECORDING

Indicates a client is currently recording all voice data in his channel.

• CLIENT_VOLUME_MODIFICATOR

The client volume modifier set by ts3client_setClientVolumeModifier.

Generally all types of information can be retrieved as both string or integer. However, in most cases the expected data type is
obvious, like querying CLIENT_NICKNAME will clearly require to store the result as string.

Example: Query nickname of client with ID 123:

TeamSpeak 3 Server
SDK Developer Manual

19

unsigned int error;
anyID clientID = 123; /* Client ID in our example */
char* nickname;

if((error = ts3server_getClientVariableAsString(serverID, clientID, CLIENT_NICKNAME, &nickname)) != ERROR_ok) {
 printf("Error querying client nickname: %d\n", error);
 return;
}

printf("Client nickname is: %s\n", nickname);
ts3server_freeMemory(nickname);

Setting client information

Client information can be modified with

unsigned int ts3server_setClientVariableAsInt(serverID, clientID, flag, value);

uint64 serverID;
anyID clientID;
ClientProperties flag;
int value;

unsigned int ts3server_setClientVariableAsString(serverID, clientID, flag, value);

uint64 serverID;
anyID clientID;
ClientProperties flag;
const char* value;

Parameters

• serverID

ID of the virtual server on which the client property should be changed.

• clientID

ID of the client whose property should be changed.

• flag

Client propery to query, see above.

• value

Value the client property should be changed to.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

Important

After modifying one or more client variables, you must flush the changes.

TeamSpeak 3 Server
SDK Developer Manual

20

unsigned int ts3server_flushClientVariable(serverID, clientID);

uint64 serverID;
anyID clientID;

For example, to change the nickname of the client with ID 55 to “Joe”:

anyID clientID = 55; /* Client ID in our example */

/* Modifiy data */
if(ts3server_setClientVariableAsString(serverID, clientID, CLIENT_NICKNAME, "Joe") != ERROR_ok) {
 printf("Error setting client nickname\n");
 return;
}

/* Flush changes
if(ts3server_flushClientVariable(serverID, clientID) != ERROR_ok) {
 printf("Error flushing client variable\n");
}

Example for applying two changes:

anyID clientID = 66; /* Client ID in our example */

/* Modify data 1 */
if(ts3server_setClientVariableAsInt(scHandlerID, clientID, CLIENT_AWAY, AWAY_ZZZ) != ERROR_ok) {
 printf("Error setting away mode\n");
 return;
}

/* Modify data 2 */
if(ts3server_setClientVariableAsString(scHandlerID, clientID, CLIENT_AWAY_MESSAGE, "Lunch") != ERROR_ok) {
 printf("Error setting away message\n");
 return;
}

/* Flush changes */
if(ts3server_flushClientVariable(scHandlerID, clientID) != ERROR_ok) {
 printf("Error flushing client variable");
}

Whisper lists

A client with a whisper list set can talk to the specified clients and channels. Whisper lists can be defined for individual clients.
A whisper list consists of an array of client IDs and/or an array of channel IDs.

unsigned int ts3server_setClientWhisperList(serverID, clID, channelID, clientID);

uint64 serverID;
anyID clID;
const uint64* channelID;
const anyID* clientID;

Parameters

• serverID

TeamSpeak 3 Server
SDK Developer Manual

21

ID of the virtual server on which the whisper list is set.

• clID

ID of the client whose whisper list is set.

• channelID

NULL-terminated array of channel IDs. These channels will be added to the clients whisper list.

Pass NULL for an empty list.

• clientID

NULL-termianted array of client IDs. These clients will be added to the clients whisper list.

Pass NULL for an empty list.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

Channel information

Query channel information

Querying and modifying information related to channels is similar to dealing with clients. The parameter flag is defined by
the enum ChannelProperties. The functions to query channel information are:

unsigned int ts3server_getChannelVariableAsInt(serverID, channelID, flag, result);

uint64 serverID;
uint64 channelID;
ChannelProperties flag;
int* result;

unsigned int ts3server_getChannelVariableAsString(serverID, channelID, flag, re-
sult);

uint64 serverID;
uint64 channelID;
ChannelProperties flag;
char** result;

Parameters

• serverID

ID of the virtual server on which the channel property is queried.

• channelID

ID of the queried channel.

TeamSpeak 3 Server
SDK Developer Manual

22

• flag

Channel propery to query, see below.

• result

Address of a variable which receives the result value as int or string, depending on which function is used. In case of a
string, memory must be released using ts3server_freeMemory, unless an error occured.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h. For the string version: If an
error has occured, the result string is uninitialized and must not be released.

The parameter flag specifies the type of queried information. It is defined by the enum ChannelProperties:

enum ChannelProperties {
 CHANNEL_NAME = 0, //Available for all channels that are "in view", always up-to-date
 CHANNEL_TOPIC, //Available for all channels that are "in view", always up-to-date
 CHANNEL_DESCRIPTION, //Must be requested (=> requestChannelDescription)
 CHANNEL_PASSWORD, //not available client side
 CHANNEL_CODEC, //Available for all channels that are "in view", always up-to-date
 CHANNEL_CODEC_QUALITY, //Available for all channels that are "in view", always up-to-date
 CHANNEL_MAXCLIENTS, //Available for all channels that are "in view", always up-to-date
 CHANNEL_MAXFAMILYCLIENTS, //Available for all channels that are "in view", always up-to-date
 CHANNEL_ORDER, //Available for all channels that are "in view", always up-to-date
 CHANNEL_FLAG_PERMANENT, //Available for all channels that are "in view", always up-to-date
 CHANNEL_FLAG_SEMI_PERMANENT, //Available for all channels that are "in view", always up-to-date
 CHANNEL_FLAG_DEFAULT, //Available for all channels that are "in view", always up-to-date
 CHANNEL_FLAG_PASSWORD, //Available for all channels that are "in view", always up-to-date
 CHANNEL_CODEC_LATENCY_FACTOR, //Available for all channels that are "in view", always up-to-date
 CHANNEL_CODEC_IS_UNENCRYPTED, //Available for all channels that are "in view", always up-to-date
 CHANNEL_ENDMARKER,
};

• CHANNEL_NAME

String: Name of the channel.

• CHANNEL_TOPIC

String: Single-line channel topic.

• CHANNEL_DESCRIPTION

String: Optional channel description. Can have multiple lines.

• CHANNEL_PASSWORD

String: Password for password-protected channels.

If a password is set or removed by modifying this field, CHANNEL_FLAG_PASSWORD will be automatically adjusted.

• CHANNEL_CODEC

Int (0-3): Codec used for this channel:

• 0 - Speex Narrowband (8 kHz)

• 1 - Speex Wideband (16 kHz)

• 2 - Speex Ultra-Wideband (32 kHz)

TeamSpeak 3 Server
SDK Developer Manual

23

• CHANNEL_CODEC_QUALITY

Int (0-10): Quality of channel codec of this channel. Valid values range from 0 to 10, default is 7. Higher values result in
better speech quality but more bandwidth usage.

• CHANNEL_MAXCLIENTS

Int: Number of maximum clients who can join this channel.

• CHANNEL_MAXFAMILYCLIENTS

Int: Number of maximum clients who can join this channel and all subchannels.

• CHANNEL_ORDER

Int: Defines how channels are sorted in the GUI. Channel order is the ID of the predecessor channel after which this channel
is to be sorted. If 0, the channel is sorted at the top of its hirarchy.

• CHANNEL_FLAG_PERMANENT / CHANNEL_FLAG_SEMI_PERMANENT

Concerning channel durability, there are three types of channels:

• Temporary

Temporary channels have neither the CHANNEL_FLAG_PERMANENT nor CHANNEL_FLAG_SEMI_PERMANENT flag
set. Temporary channels are automatically deleted by the server after the last user has left and the channel is empty. They
will not be restored when the server restarts.

• Semi-permanent

Semi-permanent channels are not automatically deleted when the last user left but will not be restored when the server
restarts.

• Permanent

Permanent channels will be restored when the server restarts.

• CHANNEL_FLAG_DEFAULT

Int (0/1): Channel is the default channel. There can only be one default channel per server. New users who did not configure
a channel to join on login in ts3server_startConnection will automatically join the default channel.

• CHANNEL_FLAG_PASSWORD

Int (0/1): If set, channel is password protected. The password itself is stored in CHANNEL_PASSWORD.

• CHANNEL_CODEC_LATENCY_FACTOR

(Int: 1-10): Latency of this channel. This allows to increase the packet size resulting in less bandwidth usage at the cost of
higher latency. A value of 1 (default) is the best setting for lowest latency and best quality. If bandwidth or network quality
are restricted, increasing the latency factor can help stabilize the connection. Higher latency values are only possible for
low-quality codec and codec quality settings.

For best voice quality a low latency factor is recommended.

• CHANNEL_CODEC_IS_UNENCRYPTED

TeamSpeak 3 Server
SDK Developer Manual

24

Int (0/1): If 1, this channel is not using encrypted voice data. If 0, voice data is encrypted for this channel. Note that channel
voice data encryption can be globally disabled or enabled for the virtual server. Changing this flag makes only sense if
global voice data encryption is set to be configured per channel as CODEC_ENCRYPTION_PER_CHANNEL (the default
behaviour).

Example 1: Query topic of channel with ID 123:

uint64 channelID = 123; /* Channel ID in our exampel */
char topic;

if(ts3server_getChannelVariableAsString(serverID, channel, CHANNEL_TOPIC, &topic) == ERROR_ok) {
 printf("Topic of channel %u is: %s\n", channelID, topic);
 ts3server_freeMemory(topic);
}

Setting channel information

Channel properties can be modified with:

unsigned int ts3server_setChannelVariableAsInt(serverID, channelID, flag, value);

uint64 serverID;
uint64 channelID;
ChannelProperties flag;
int value;

unsigned int ts3server_setChannelVariableAsString(serverID, channelID, flag, value);

uint64 serverID;
uint64 channelID;
ChannelProperties flag;
const char* value;

Parameters

• serverConnectionHandlerID

ID of the virtual server on which the information for the specified channel should be changed.

• channelID

ID of the channel whoses property should be changed.

• flag

Channel propery to change, see above.

• value

Value the channel property should be changed to.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

TeamSpeak 3 Server
SDK Developer Manual

25

Important

After modifying one or more channel variables, you must flush the changes.

unsigned int ts3server_flushChannelVariable(serverID, channelID);

uint64 serverID;
uint64 channelID;

Parameters

• serverConnectionHandlerID

ID of the virtual server to which the channel changes should be flushed.

• channelParentID

ID of the channel of which the changed properties should be flushed.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

Example: Change the channel name and topic:

/* Modify channel name */
if(ts3server_setChannelVariableAsString(serverID, channelID, CHANNEL_NAME, "New channel name") != ERROR_ok) {
 printf("Error setting channel name\n");
}

/* Modify channel topic */
if(ts3server_setChannelVariableAsString(serverID, channelID, CHANNEL_TOPIC, "New channel topic") != ERROR_ok) {
 printf("Error setting channel topic\n");
}

/* Flush changes */
if(ts3server_flushChannelVariable(serverID, channelID) != ERROR_ok) {
 printf("Error flushing channel variable\n");
}

Server information

Query server information

Information related to a virtual server can be queried with::

unsigned int ts3server_getVirtualServerVariableAsInt(serverID, flag, result);

uint64 serverID;
VirtualServerProperties flag;
int* result;

unsigned int ts3server_getVirtualServerVariableAsString(serverID, flag, result);

uint64 serverID;

TeamSpeak 3 Server
SDK Developer Manual

26

VirtualServerProperties flag;
char** result;

Parameters

• serverID

ID of the virtual server of which the property is queried.

• flag

Virtual server propery to query, see below.

• result

Address of a variable which receives the result value as int or string, depending on which function is used. In case of a
string, memory must be released using ts3server_freeMemory, unless an error occured.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h. For the string version: If an
error has occured, the result string is uninitialized and must not be released.

The parameter flag specifies the type of queried information. It is defined by the enum VirtualServerProperties:

enum VirtualServerProperties {
 VIRTUALSERVER_UNIQUE_IDENTIFIER = 0, //available when connected, can be used to identify this particular
 //server installation
 VIRTUALSERVER_NAME, //available and always up-to-date when connected
 VIRTUALSERVER_WELCOMEMESSAGE, //available when connected, not updated while connected
 VIRTUALSERVER_PLATFORM, //available when connected
 VIRTUALSERVER_VERSION, //available when connected
 VIRTUALSERVER_MAXCLIENTS, //only available on request (=> requestServerVariables), stores the
 //maximum number of clients that may currently join the server
 VIRTUALSERVER_PASSWORD, //not available to clients, the server password
 VIRTUALSERVER_CLIENTS_ONLINE, //only available on request (=> requestServerVariables),
 VIRTUALSERVER_CHANNELS_ONLINE, //only available on request (=> requestServerVariables),
 VIRTUALSERVER_CREATED, //available when connected, stores the time when the server was created
 VIRTUALSERVER_UPTIME, //only available on request (=> requestServerVariables), the time
 //since the server was started
 VIRTUALSERVER_CODEC_ENCRYPTION_MODE, //available and always up-to-date when connected
 VIRTUALSERVER_ENDMARKER,
};

• VIRTUALSERVER_UNIQUE_IDENTIFIER

Unique ID for this virtual server. Stays the same after restarting the server application.

• VIRTUALSERVER_NAME

Name of this virtual server.

• VIRTUALSERVER_WELCOMEMESSAGE

Optional welcome message sent to the client on login.

• VIRTUALSERVER_PLATFORM

Operating system used by this server.

TeamSpeak 3 Server
SDK Developer Manual

27

• VIRTUALSERVER_VERSION

Application version of this server.

• VIRTUALSERVER_MAXCLIENTS

Defines maximum number of clients which may connect to this server.

• VIRTUALSERVER_PASSWORD

Optional password of this server.

If a password is set or removed by modifying this field, VIRTUALSERVER_FLAG_PASSWORD will be automatically
adjusted.

• VIRTUALSERVER_CLIENTS_ONLINE

VIRTUALSERVER_CHANNELS_ONLINE

Number of clients and channels currently on this virtual server.

• VIRTUALSERVER_CREATED

Time when this virtual server was created.

• VIRTUALSERVER_UPTIME

Uptime of this virtual server.

• VIRTUALSERVER_CODEC_ENCRYPTION_MODE

Defines if voice data encryption is configured per channel, globally forced on or globally forced off for this
virtual server. The default behaviour is configure per channel, in this case modifying the channel property
CHANNEL_CODEC_IS_UNENCRYPTED defines voice data encryption of individual channels.

Virtual server encryption mode can be set to the following parameters:

enum CodecEncryptionMode {
 CODEC_ENCRYPTION_PER_CHANNEL = 0,
 CODEC_ENCRYPTION_FORCED_OFF,
 CODEC_ENCRYPTION_FORCED_ON,
};

This property is always available when connected.

Example checking the number of clients online, obviously an integer value:

int clientsOnline;

if(ts3server_getVirtualServerVariableAsInt(serverID, VIRTUALSERVER_CLIENTS_ONLINE,
 &clientsOnline) == ERROR_ok)
 printf("There are %d clients online\n", clientsOnline);

Setting server information

Change server variables with the following functions:

unsigned int ts3server_setVirtualServerVariableAsInt(serverID, flag, value);

TeamSpeak 3 Server
SDK Developer Manual

28

uint64 serverID;
ChannelProperties flag;
int value;

unsigned int ts3server_setVirtualServerVariableAsString(serverID, flag, value);

uint64 serverID;
ChannelProperties flag;
const char* value;

Parameters

• serverID

ID of the virtual server of which the property should be changed.

• flag

Virtual server propery to change, see above.

• value

Value the virtual server property should be changed to.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

Important

After modifying one or more server variables, you must flush the changes.

unsigned int ts3server_flushVirtualServerVariable(serverID);

uint64 serverID;

Example: Change the servers welcome message:

if(ts3server_setVirtualServerVariableAsString(serverID, VIRTUALSERVER_WELCOMEMESSAGE,
 "New welcome message") != ERROR_ok) {
 printf("Error setting server welcomemessage\n");
 return;
}

if(ts3server_flushVirtualServerVariable(serverID) != ERROR_ok) {
 printf("Error flushing server variable\n");
}

Bandwidth information
The server offers information about the currently used bandwidth.

The following set of connection properties can be queried:

TeamSpeak 3 Server
SDK Developer Manual

29

• CONNECTION_PACKETS_SENT_TOTAL

• CONNECTION_BYTES_SENT_TOTAL

• CONNECTION_PACKETS_RECEIVED_TOTAL

• CONNECTION_BYTES_RECEIVED_TOTAL

• CONNECTION_BANDWIDTH_SENT_LAST_SECOND_TOTAL

• CONNECTION_BANDWIDTH_SENT_LAST_MINUTE_TOTAL

• CONNECTION_BANDWIDTH_RECEIVED_LAST_SECOND_TOTAL

• CONNECTION_BANDWIDTH_RECEIVED_LAST_MINUTE_TOTAL

The connection information can be queried with the following two functions:

unsigned int ts3server_getVirtualServerConnectionVariableAsUInt64(serverID, flag,
result);

uint64 serverID;
enum ConnectionProperties flag;
uint64* result;

unsigned int ts3server_getVirtualServerConnectionVariableAsDouble(serverID, flag,
result);

uint64 serverID;
enum ConnectionProperties flag;
double* result;

Parameters

• serverID

Server ID

• flag

One of the above listed connection properties.

• result

Address of a variable that receives the result value as uint64 (unsigned 64-bit integer) or double type, depending on which
of the two functions was used.

Both functions return ERROR_ok on success, otherwise an error code as defined in public_errors.h.

TeamSpeak 3 Server
SDK Developer Manual

30

Channel and client manipulation
The Server Lib offers a subset of client-side functionality to create, move and delete channels directly on the server.

Creating a new channel
To create a channel, first set the desired channel variables using ts3server_setChannelVariableAsInt and
ts3server_setChannelVariableAsString. Pass zero as the channel ID parameter.

Next send the request to the server by calling:

unsigned int ts3server_flushChannelCreation(serverID, channelParentID, result);

uint64 serverID;
uint64 channelParentID;
uint64* result;

Parameters

• serverID

ID of the virtual server on which that channel should be created.

• channelParentID

ID of the parent channel, if the new channel is to be created as subchannel. Pass zero if the channel should be created as
top-level channel.

• result

Address of a variable that receives the ID of the newly created channel.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

Example code to create a channel:

#define CHECK_ERROR(x) if((error = x) != ERROR_ok) { goto on_error; }

int createChannel(uint64 serverID, uint64 parentChannelID, const char* name, const char* topic,
 const char* description, const char* password, int codec, int codecQuality,
 int maxClients, int familyMaxClients, int order, int perm, int semiperm,
 int default) {
 unsigned int error;
 uint64 newChannelID;

 /* Set channel data, pass 0 as channel ID */
 CHECK_ERROR(ts3server_setChannelVariableAsString(serverID, 0, CHANNEL_NAME, name);
 CHECK_ERROR(ts3server_setChannelVariableAsString(serverID, 0, CHANNEL_TOPIC, topic);
 CHECK_ERROR(ts3server_setChannelVariableAsString(serverID, 0, CHANNEL_DESCRIPTION, description);
 CHECK_ERROR(ts3server_setChannelVariableAsString(serverID, 0, CHANNEL_PASSWORD, password);
 CHECK_ERROR(ts3server_setChannelVariableAsInt (serverID, 0, CHANNEL_CODEC, codec);
 CHECK_ERROR(ts3server_setChannelVariableAsInt (serverID, 0, CHANNEL_CODEC_QUALITY, codecQuality);
 CHECK_ERROR(ts3server_setChannelVariableAsInt (serverID, 0, CHANNEL_MAXCLIENTS, maxClients);
 CHECK_ERROR(ts3server_setChannelVariableAsInt (serverID, 0, CHANNEL_MAXFAMILYCLIENTS, familyMaxClients);
 CHECK_ERROR(ts3server_setChannelVariableAsInt (serverID, 0, CHANNEL_ORDER, order);

TeamSpeak 3 Server
SDK Developer Manual

31

 CHECK_ERROR(ts3server_setChannelVariableAsInt (serverID, 0, CHANNEL_FLAG_PERMANENT, perm);
 CHECK_ERROR(ts3server_setChannelVariableAsInt (serverID, 0, CHANNEL_FLAG_SEMI_PERMANENT, semiperm);
 CHECK_ERROR(ts3server_setChannelVariableAsInt (serverID, 0, CHANNEL_FLAG_DEFAULT, default));

 /* Flush changes to server */
 CHECK_ERROR(ts3server_flushChannelCreation(serverID, parentChannelID, &newChannelID));

 printf("Created new channel with ID: %u\n", newChannelID);
 return 0; /* Success */

on_error:
 printf("Error creating channel: %d\n", error);
 return 1; /* Failure */
}

After creating a channel, the event onChannelCreated is called.

Deleting a channel
A channel can be deleted by the server with

unsigned int ts3server_channelDelete(serverID, channelID, force);

uint64 serverID;
uint64 channelID;
int force;

Parameters

• serverID

The ID of the virtual server on which the channel should be deleted.

• channelID

The ID of the channel to be deleted.

• force

If 1, first move all clients inside the specified channel to the default channel and then delete the specific channel. If false,
deleting a channel with joined clients will fail.

If 0, the server will refuse to a channel that is not empty.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

After successfully deleting a channel, the event onChannelDeleted is called for every deleted channel.

Moving a channel
To move a channel to a new parent channel, call

unsigned int ts3server_channelMove(serverID, channelID, newChannelParentID);

uint64 serverID;

TeamSpeak 3 Server
SDK Developer Manual

32

uint64 channelID;
uint64 newChannelParentID;

Parameters

• serverID

ID of the virtual server on which the channel should be moved.

• channelID

ID of the channel to be moved.

• newChannelParentID

ID of the parent channel where the moved channel is to be inserted as child. Use 0 to insert as top-level channel.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

After the channel has been moved, the event onChannelEdited is called.

Moving clients
Clients can be moved server-side to another channel, in addition to the client-side functionality offered by the Client Lib. To
move one or multiple clients to a new channel, call:

unsigned int ts3server_clientMove(serverID, newChannelID, clientIDArray);

uint64 serverID;
uint64 newChannelID;
const anyID* clientIDArray;

Parameters

• serverID

ID of the virtual server on which the client should be moved.

• newChannelID

ID of the channel in which the clients should be moved into.

• newChannelParentID

Zero-terminated array with the IDs of the clients to be moved.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

Example to move a single client to another channel:

anyID clientIDArray[2]; /* One client plus terminating zero as end-marker */
uint64 newChannelID;

TeamSpeak 3 Server
SDK Developer Manual

33

unsigned int error;

clientIDArray[0] = clientID; /* Client to move */
clientIDArray[1] = 0; /* End marker */

if((error = ts3server_clientMove(serverID, newChannelID, channelIDArray)) != ERROR_ok) {
 /* Handle error */
 return;
}

/* Client moved successfully */

Events
The server lib will notify the server application about certain actions by sending events as callbacks. Callback function pointers
needs to be initialized in ts3server_initServerLib.

Note

Your callback implementations should exit quickly to avoid blocking the server. If you require to do lengthly
operations, consider using a new thread to let the callback itself finish as soon as possible.

All strings are UTF-8 encoded.

A client has connected:

void onClientConnected(serverID, clientID, channelID, removeClientError);

uint64 serverID;
anyID clientID;
uint64 channelID;
unsigned int* removeClientError;

Parameters

• serverID

ID of the virtual server.

• clientID

ID of the connected client.

• channelID

ID of the channel the client has joined.

• removeClientError

If the pointer value is ERROR_ok (default), this client will connect normally to the virtual server. To prevent the client
connecting, set the pointer value to any valid error (see the header public_errors.h):

*removeClientError = ERROR_client_insufficient_permissions;

If you do not want to block the client, it's best to not modify the removeClientError parameter at all and leave the
default value of ERROR_ok.

TeamSpeak 3 Server
SDK Developer Manual

34

A client has disconnected:

void onClientDisconnected(serverID, clientID, channelID);

uint64 serverID;
anyID clientID;
uint64 channelID;

Parameters

• serverID

ID of the virtual server.

• clientID

ID of the disconnected client.

• channelID

ID of the channel the client has left.

A client has moved into another channel:

void onClientMoved(serverID, clientID, oldChannelID, newChannelID);

uint64 serverID;
anyID clientID;
uint64 oldChannelID;
uint64 newChannelID;

Parameters

• serverID

ID of the virtual server.

• clientID

ID of the moved client.

• oldChannelID

ID of the old channel the client has left.

• newChannelID

ID of the new channel the client has joined.

TeamSpeak 3 Server
SDK Developer Manual

35

A channel has been created:

void onChannelCreated(serverID, invokerClientID, channelID);

uint64 serverID;
anyID invokerClientID;
uint64 channelID;

Parameters

• serverID

ID of the virtual server.

• invokerClientID

ID of the invoker who created the channel (client or server ID).

• channelID

ID of the created channel.

A channel has been edited:

void onChannelEdited(serverID, invokerClientID, channelID);

uint64 serverID;
anyID invokerClientID;
uint64 channelID;

Parameters

• serverID

ID of the virtual server.

• invokerClientID

ID of the invoker who edited the channel (client or server ID).

• channelID

ID of the edited channel.

A channel has been deleted:

void onChannelDeleted(serverID, invokerClientID, channelID);

uint64 serverID;
anyID invokerClientID;
uint64 channelID;

TeamSpeak 3 Server
SDK Developer Manual

36

Parameters

• serverID

ID of the virtual server.

• invokerClientID

ID of the invoker who deleted the channel (client or server ID).

• channelID

ID of the deleted channel.

Text messages can be received on the server side. Only server and channel chats trigger this event, client-to-client messages
are not caught for privacy reasons.

Server chat messages can be intercepted with:

void onServerTextMessageEvent(serverID, invokerClientID, textMessage);

uint64 serverID;
anyID invokerClientID;
const char* textMessage;

Parameters

• serverID

ID of the virtual server.

• invokerClientID

ID of the client who sent the text message.

• textMessage

Message text

Channel chat messages can be intercepted with:

void onChannelTextMessageEvent(serverID, invokerClientID, targetChannelID, textMes-
sage);

uint64 serverID;
anyID invokerClientID;
uint64 targetChannelID;
const char* textMessage;

Parameters

• serverID

TeamSpeak 3 Server
SDK Developer Manual

37

ID of the virtual server.

• invokerClientID

ID of the client who sent the text message.

• targetChannelID

ID of the channel in which the text message was sent.

• textMessage

Message text

If user-defined logging was enabled when initialzing the Server Lib by passing LogType_USERLOGGING to the used-
LogTypes parameter of ts3server_initServerLib, log messages will be sent to the following callback, which al-
lows user customizable logging and handling or critical errors:

void onUserLoggingMessageEvent(logMessage, logLevel, logChannel, logID, logTime, com-
pleteLogString);

const char* logMessage;
int logLevel;
const char* logChannel;
uint64 logID;
const char* logTime;
const char* completeLogString;

Parameters

• logMessage

Actual log message text.

• logLevel

Severity of log message, defined by the enum LogLevel.

enum LogLevel {
 LogLevel_CRITICAL = 0, //these messages stop the program
 LogLevel_ERROR, //everything that is really bad, but not so bad we need to shut down
 LogLevel_WARNING, //everything that *might* be bad
 LogLevel_DEBUG, //output that might help find a problem
 LogLevel_INFO, //informational output, like "starting database version x.y.z"
 LogLevel_DEVEL //developer only output (will not be displayed in release mode)
};

Note that only log messages of a level higher than the one configured with ts3server_setLogVerbosity will appear.

• logChannel

Optional custom text to categorize the message channel.

• logID

TeamSpeak 3 Server
SDK Developer Manual

38

Virtual server ID identifying the current virtual server when using multiple connections.

• logTime

String with date and time when the log message occured.

• completeLogString

Provides a verbose log message including all previous parameters for convinience.

A client connected to this server starts or stops talking:

void onClientStartTalkingEvent(serverID, clientID);

uint64 serverID;
anyID clientID;

void onClientStopTalkingEvent(serverID, clientID);

uint64 serverID;
anyID clientID;

Parameters

• serverID

The ID of the server which sent the event.

• clientID

ID of the client who starts or stops talking

If required, the raw voice data can be caught by the server to implement server-side voice recording. Whenever a client is
sending voice data, the following function is called:

void onVoiceDataEvent(serverID, clientID, voiceData, voiceDataSize, frequency);

uint64 serverID;
anyID clientID;
unsigned char* voiceData;
unsigned int voiceDataSize;
unsigned int frequency;

Parameters

• serverID

TeamSpeak 3 Server
SDK Developer Manual

39

The ID of the server which sent the event.

• clientID

ID of the client who sent the voice data.

• voiceData

Buffer containing the voice data. Format is 16 bit mono.

Caution

The buffer must not be freed.

• voiceDataSize

Size of the voiceData buffer.

• frequency

Frequency of the voice data.

Note

This event is only called when there are at least two clients in the same channel. Clients talking “to themselves”
are not recorded.

If server-side recording is not required, don't implement this callback.

The following event is called when a license error occurs, like for example missing license file, expired license, starting too
many virtual servers etc. Instead of shutting down the whole process by throwing a critical error in the Server Lib, this callback
allows you to handle the issue gracefully and keep your application running.

void onAccountingErrorEvent(serverID, errorCode);

uint64 serverID;
unsigned int errorCode;

Parameters

• serverID

The ID of the virtual server on which the license error occured. This virtual server will be automatically shutdown, other
virtual servers keep running.

If serverID is zero, all virtual servers are affected and have been shutdown. In this case you might want to call
ts3server_destroyServerLib to clean up resources.

• errorCode

Code of the occured error. Use ts3server_getGlobalErrorMessage to convert to a message string.

TeamSpeak 3 Server
SDK Developer Manual

40

Custom encryption
As an optional feature, the TeamSpeak 3 SDK allows users to implement custom encryption and decryption for all network
traffic. Custom encryption replaces the default AES encryption implemented by the TeamSpeak 3 SDK. A possible reason to
apply own encryption might be to make ones TeamSpeak 3 client/server incompatible to other SDK implementations.

Custom encryption must be implemented the same way in both the client and server.

Note

If you do not want to use this feature, just don't implement the two encryption callbacks.

To encrypt outgoing data, implement the callback:

void onCustomPacketEncryptEvent(dataToSend, sizeOfData);

char** dataToSend;
unsigned int* sizeOfData;

Parameters

• dataToSend

Pointer to an array with the outgoing data to be encrypted.

Apply your custom encryption to the data array. If the encrypted data is smaller than sizeOfData, write your encrypted data
into the existing memory of dataToSend. If your encrypted data is larger, you need to allocate memory and redirect the
pointer dataToSend. You need to take care of freeing your own allocated memory yourself. The memory allocated by the
SDK, to which dataToSend is originally pointing to, must not be freed.

• sizeOfData

Pointer to an integer value containing the size of the data array.

To decrypt incoming data, implement the callback:

void onCustomPacketDecryptEvent(dataReceived, dataReceivedSize);

char** dataReceived;
unsigned int* dataReceivedSize;

Parameters

• dataReceived

Pointer to an array with the received data to be decrypted.

Apply your custom decryption to the data array. If the decrypted data is smaller than dataReceivedSize, write your decrypted
data into the existing memory of dataReceived. If your decrypted data is larger, you need to allocate memory and redirect

TeamSpeak 3 Server
SDK Developer Manual

41

the pointer dataReceived. You need to take care of freeing your own allocated memory yourself. The memory allocated by
the SDK, to which dataReceived is originally pointing to, must not be freed.

• dataReceivedSize

Pointer to an integer value containing the size of the data array.

Example code implementing a very simple XOR custom encryption and decryption (also see the SDK examples):

void onCustomPacketEncryptEvent(char** dataToSend, unsigned int* sizeOfData) {
 unsigned int i;
 for(i = 0; i < *sizeOfData; i++) {
 (*dataToSend)[i] ^= CUSTOM_CRYPT_KEY;
 }
}

void onCustomPacketDecryptEvent(char** dataReceived, unsigned int* dataReceivedSize) {
 unsigned int i;
 for(i = 0; i < *dataReceivedSize; i++) {
 (*dataReceived)[i] ^= CUSTOM_CRYPT_KEY;
 }
}

Miscellaneous functions
Memory dynamically allocated in the Server Lib needs to be released with:

unsigned int ts3server_freeMemory(pointer);

void* pointer;

Parameters

• pointer

Address of the variable to be released.

Example:

char* version;

if(ts3server_getServerLibVersion(&version) == ERROR_ok) {
 printf("Version: %s\n", version);
 ts3server_freeMemory(version);
}

Important

Memory must not be released if the function, which dynamically allocated the memory, returned an error. In that
case, the result is undefined and not initialized, so freeing the memory might crash the application.

The severity of log messages that are passed to the callback onUserLoggingMessageEvent can be configured with:

unsigned int ts3server_setLogVerbosity(logVerbosity);

TeamSpeak 3 Server
SDK Developer Manual

42

enum LogLevel logVerbosity;

Parameters

• logVerbosity

Only messages with a LogLevel equal or higher than logVerbosity will be sent to the callback.

The default value is LogLevel_DEVEL.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h.

For example, after calling

ts3server_setLogVerbosity(LogLevel_ERROR);

only log messages of level LogLevel_ERROR and LogLevel_CRITICAL will be passed to onUserLoggingMes-
sageEvent.

FAQ
1. I cannot start multiple server processes? I cannot start more than one virtual server?

You don't have a valid license key in the correct location. The file licensekey.dat needs to be placed in the same
directory as your server executable. If no or an invalid license key is present, the server will run with the following
restrictions:

• Only one server process per machine

• Only one virtual server per process

• Only 32 slots

Please contact <sales@tritoncia.com> about license key inquiries or to obtain a valid license.

2. How can I configure the maximum number of slots?

The number of slots per virtual server can be changed by setting the virtual server property
VIRTUALSERVER_MAXCLIENTS.

Example to set 100 slots on the specified virtual server:

ts3server_setVirtualServerVariableAsInt(serverID, VIRTUALSERVER_MAXCLIENTS, 100); // Set value
ts3server_flushVirtualServerVariable(serverID); // Flush value

Important

Please note that you probably do not have unlimited slots allowed by your license, so don't set this arbi-
trarily.

3. I get "Accounting | | sid=1 is running" "initializing shutdown" in the log

TeamSpeak 3 Server
SDK Developer Manual

43

This error does not occur because you are exceeding your licensed server or slot count, but rather because you are
running more than one instance of a virtual server with the same server keypair.

When creating a new virtual server, a keypair must be passed to ts3server_createVirtualServer. It is im-
portant to store the used keypair and reuse it when restarting this virtual server later instead of creating a new key. See
the server sample within the SDK for an example.

However, above problem can happen if the virtual server is started with a stored keypair, then the entire folder including
the stored keypair is copied to another PC and also started there with the same key. In this case the licensing server will
notice the same key is used more than once after one hour and shutdown the most recently started server which tried
to steal the identity of an already running server.

The fix, in the server sample case, would be to delete the keypair_*.txt files from the copied directory before starting the
second server, that way a new key would be generated and the licensing server would see the two servers as two valid
different entities. The accounting server would now only complain if the number of simultaneously running servers
exceeds your number of slots.

4. How to implement a name/password authentication?

Although TeamSpeak 3 offers an authentication system based on public/private keys, an often made request is to use an
additional login name/password mechanism to authenticate clients with the TeamSpeak 3 server. Here we will suggest
a possibility to implement this authentication on top of the existing public/private key mechanism.

When connecting to the TeamSpeak 3 server, a client might make use of the CLIENT_META_DATA property and fill
this with a name/password combination to let the server validate this this data in the servers onClientConnected
callback. This callback allows to set an error value to block this clients connection.

The client-side code:

// In the client, set CLIENT_META_DATA before connecting
if(ts3client_setClientSelfVariableAsString(scHandlerID, CLIENT_META_DATA, "NAME#PASSWORD") != ERROR_ok) {
 printf("Failed setting client meta data\n");
 return;
}

// Call ts3client_startConnection

In the server implement the onClientConnected callback, which validates the name/password meta data and refuses the
connection if not validated:

void onClientConnected(uint64 serverID, anyID clientID, uint64 channelID, unsigned int* removeClientError) {
 // Query CLIENT_META_DATA
 char* metaData;
 if(ts3server_getClientVariableAsString(serverID, clientID, CLIENT_META_DATA, &metaData) != ERROR_ok) {
 printf("Failed querying client meta data\n");
 *removeClientError = ERROR_client_not_logged_in; // Block client
 return;
 }

 // Validate name/password
 if(!validateNamePassword(metaData)) {
 *removeClientError = ERROR_client_not_logged_in; // Block client
 }
 // Client is allowed to connect if removeClientError is not changed
 // (defaults is ERROR_ok)
 ts3server_freeMemory(metaData); // Release previously allocated memory
}

TeamSpeak 3 Server
SDK Developer Manual

44

Revision history
Revision History

Revision 1.29 17 Sep 010
Added documentation for new voice data encryption settings.
Revision 1.28 26 Aug 2010
Added FAQ entry on how to implement a name/password authentication mechanism.
Revision 1.27 10 Jun 010
Adjusted text message callbacks, added channel latency factor property, changed Mac OS X system requirements.
Revision 1.26 28 Jan 2010
Changed server and channel IDs from type anyID to uint64. Adjusted onTextMessageEvent callback.
Revision 1.25 10 Nov 2009
Added onClientMoved callback.
Revision 1.24 29 Oct 2009
Client whisper list setting and server side recording are always enabled.
Revision 1.23 14 Sep 2009
Added custom encryption callbacks
Revision 1.22 09 Jun 2009
Added onTextMessageEvent callback.
Revision 1.21 15 Mai 2009
Added onAccountingErrorEvent callback.
Revision 1.20 08 Apr 2009
Added ts3server_clientMove, change to ts3server_createVirtualServer.
Revision 1.19 19 Dec 2008
Extended FAQ.
Revision 1.18 7 Nov 2008
Error handling API change.
Revision 1.17 15 Oct 2008
New removeClientError parameter for onClientConnected callback.
Revision 1.16 15 Oct 2008
Added bandwidth section. onClientStart/StopTalkingEvent now part of all SDK builds. Updated ts3server_createVirtualServer function,
which now requires a unique ID and max slots as arguments. Added new ts3server_getVirtualServerKeyPair function.
Revision 1.15 06 Oct 2008
Changed function prefix from ts3_ to ts3server so both client and server shared libraries can be loaded in the same application. Added
new FMOD wrapper functions.
Revision 1.14 9 Sep 2008
Adjusted ts3server_createVirtualServer function, removed ts3server_startVirtualServer. Added license key notes and FAQ section.
Revision 1.13 5 Sep 2008
Changed default server port from 3000 to 9987.
Revision 1.12 2 Jul 2008
Updated ts3server_initServerLib function.
Revision 1.11 3 Jun 2008
Added ts3server_add/start/stopVirtualServer and ts3server_setVirtualServerVariableAsInt/String functions.
Revision 1.10 30 May 2008
New server properties added. Added note about cdecl calling convention.
Revision 1.9 16 May 2008
Added new callbacks. Corrected ts3server_flushChannelCreation documentation.
Revision 1.8 13 May 2008
Added System requirements chapter. Added new ClientProperties fields.
Revision 1.7 28 Apr 2008
Added ts3server_ prefix to all serverlib function calls.
Revision 1.6 5 Mar 2008
Added remark for new database logging.

TeamSpeak 3 Server
SDK Developer Manual

45

Index
B
bandwidth, 28

C
callback, 7
calling convention, 5
connection information, 28
contact, 2
copyright, 2

E
enums

ChannelProperties, 22
ClientProperties, 17
CodecEncryptionMode, 27
LogLevel, 37
LogType, 7, 37
VirtualServerProperties, 26

events
onAccountingErrorEvent, 39
onChannelCreated, 35
onChannelDeleted, 36
onChannelEdited, 35
onChannelTextMessageEvent, 36
onClientConnected, 33
onClientDisconnected, 34
onClientMoved, 34
onClientStartTalkingEvent, 38
onClientStopTalkingEvent, 38
onCustomPacketDecryptEvent, 40
onCustomPacketEncryptEvent, 40
onServerTextMessageEvent, 36
onUserLoggingMessageEvent, 37
onVoiceDataEvent, 38

F
FAQ, 42
functions

ts3server_channelDelete, 31
ts3server_channelMove, 32
ts3server_clientMove, 32
ts3server_createVirtualServer, 14
ts3server_destroyServerLib, 9
ts3server_flushChannelCreation, 30
ts3server_flushChannelVariable, 25
ts3server_flushClientVariable, 20
ts3server_flushVirtualServerVariable, 28

TeamSpeak 3 Server
SDK Developer Manual

46

ts3server_freeMemory, 41
ts3server_getChannelClientList, 12
ts3server_getChannelList, 11
ts3server_getChannelOfClient, 12
ts3server_getChannelVariableAsInt, 21
ts3server_getChannelVariableAsString, 21
ts3server_getClientList, 11
ts3server_getClientVariableAsInt, 16
ts3server_getClientVariableAsString, 16
ts3server_getGlobalErrorMessage, 10
ts3server_getParentChannelOfChannel, 13
ts3server_getServerLibVersion, 8
ts3server_getVirtualServerConnectionVariableAsDouble, 29
ts3server_getVirtualServerConnectionVariableAsUInt64, 29
ts3server_getVirtualServerKeyPair, 15
ts3server_getVirtualServerList, 11
ts3server_getVirtualServerVariableAsInt, 25
ts3server_getVirtualServerVariableAsString, 26
ts3server_initServerLib, 6
ts3server_setChannelVariableAsInt, 24
ts3server_setChannelVariableAsString, 24
ts3server_setClientVariableAsInt, 19
ts3server_setClientVariableAsString, 19
ts3server_setClientWhisperList, 20
ts3server_setLogVerbosity, 42
ts3server_setVirtualServerVariableAsInt, 28
ts3server_setVirtualServerVariableAsString, 28
ts3server_stopVirtualServer, 15

L
license error, 39
license key, 6, 42
Linux, 5

M
Macintosh, 5

S
slots, 42
system requirements, 5

T
TeamSpeak Systems, 2

W
Windows, 5

	TeamSpeak 3 Server SDK Developer Manual
	Table of Contents
	Copyright
	License agreement

	Introduction
	System requirements
	Usage

	Calling Server lib functions
	Initializing
	The callback mechanism

	Querying the library version
	Shutting down
	Error handling
	Query virtual servers, clients and channels
	Create and stop virtual servers
	Retrieve and store information
	Client information
	Query client information
	Setting client information
	Whisper lists

	Channel information
	Query channel information
	Setting channel information

	Server information
	Query server information
	Setting server information

	Bandwidth information

	Channel and client manipulation
	Creating a new channel
	Deleting a channel
	Moving a channel
	Moving clients

	Events
	Custom encryption

	Miscellaneous functions
	FAQ
	Revision history
	Index

