TeamSpeak 3 Client
SDK Developer Manual

Revision 2011-09-08 16:05:04
Copyright © 2007-2011 TeamSpeak Systems GmbH

Table of Contents

L0070/ 1 T 1| 2
I Tor= gl I o == 1 1= | P 2

gL T [Tox ' o PR 5
Y S (S LU0 0T 1= £ PN 5
OVENVIEW OF NEBAEY FIlES ..ot et et r ettt e e e et e e e e et e e e eaaenaeeeennns 5
(0= | 1 aTo TR @t TT= o1l T oI {00 o1 o 0= 6
G L0 T 0o L= PP 7

TR (=4 o 7
The callback MEChBNISM ... i et e e e e e e e e e et e e e e et e e e e et eas 8

10 80= oY T aTo i Tl [T ol ir= VY= = Yo o 9
RS LU T T [[0 o P 10
Managing server CONNECLION NANAIEScouui i e e e e e e e e e et e e ean e eanaas 11
(o Tal0Tc o 1] 0o R (o T TR = A= PN 12
DISCONNECHING FrOM @ SEIVET ...uiiiiii i e e e e e e e e e e e e et e e e et e e et e e et r e e et e e et e e et s e ean e sen e eatneeeaneeenns 16
o gl 0= To (1T o PPN 17
[0 To o 1o RSN 19
L0 LSS L=t 1= o B oo o 1o PSP 20
Using playback and capture modes and GEVICEScouuiiiiii e e e e e e e e e e e e e e e aanaees 22
RN E= T4l ao M aaTole (=3F o To e (=Y T 22
Querying available MOAES AN EVICESuiiiiiiiii e e e e e e e e e e e e aanas 23
Checking current MOdeS @nNA GEVICESu.iiuueii et e e e e e e e e e e et e et e e e st e e eaeeeeas 27

(O o1 aTo o (=Y o= 28

(O LT gTo Mot 0 o g0 =Y, o= 30
ACLIVALiNg the CAPLUIE AEVICEvu i e e e e e e e e e e e e e et e e et e e et e e aaeeaens 33

IS a0 o oo o (= o: PR 34
(oo 0 L= g 0] o1 o - 35
= o] 0Twr=s o) e o) 0] P 36
o = Y] 0 Qo o o) N 39
ACCESSING the VOICE DUFTEN . .oee i e e e e e e e e et e e et e et e e aa e e eanns 42
RV o o I (= /oo 1 oo TP 46

o = Y0 010 ATz Y]S 46
KIS0 T o U 48
Query available servers, channels and ClIENESc.u oo e e e een 52
Retrieve and StOre INFOIMELIONiiiiii et e et e e et e e e et e e e e et e e e e et e e e e st e e e estnaeeeatn s 56
(@1 o T o1 {41 7= 1 o) o [PP 56
Information related 10 OWN CHENE ... iiiii e e e e e e et e e e 56
Information related t0 OthEr ClIENES .. .ooiuui e e e e e e 62

R AT LA o 1= S 1T £ Y 64

Channel INFOMMIBLION ... e e e et e e e ettt e e e e et e e e e et r e e e eeteneeeeeteneeeestnaeaenes 66
(019710101 IRYoTTwl=No =1 - W= g Tex Y 014 o] o [72

TeamSpeak 3 Client
SDK Developer Manual

(@107 10107 IS o 11 o PPN 73

SEIVEN INTOIMBLION ... eete ettt e et r e et e e et et e et et e et e b e e et e e e et e b e e et ebe e e e e ena e 73
INtEraCting With the SEIVEN ... e et e et e et e et e et e et e e e an e e eaeeeans 77
JOINING @ ChaNNEL ... e et ettt e e e e et e e e e eaas 77
Creating @ NEW CRANNEL ... e e e e e et e et e et e e et r e et e et e e et e eeaneaeans 80
DElEliNg @ CRANNEL ...t et e et et e et e e et e et e e e e e et e e e e ean s 81
MOVING 8 CRANNEL ...t e ettt ettt et e et e et e e ea e e e et e e ea e e et e aean e eanaae 83

TEXE CRBE ... e e et ettt et e e e een 84

= 0701 o PP 84

S = L1 o TSP UPIRPTRN 86

(Lo 0 o I e 1< o £ 87
Channel SUDSCIIPLIONS ... et e ettt et e et e et e e et e e et e e et e e e an e eeaeeeanaas Q0
MULING CHENES TOCBIIY ..ot et ettt e et et e e et e e et e e et e e e an e eanaaes 93
LO0ES (ol g = 0Tet oY/ o) o] o I PP 94
10 101 g Y= o PP PPPPPTTRPPPPPTN 95
MISCEIIANEOUS TUNCLIONS ...ttt ettt e ettt ettt e et et e e et et e e e e ebe e e e eene e e eenne e eeees 98
N P T TP PT SO PPPTTTTRR 99
YIS o] 0 411 (o o PR PPTUPN 101
130 (< PP TUPPPT 102

Copyright
Copyright © 2007-2011 TeamSpeak Systems GmbH. All rights reserved.

TeamSpeak Systems GmbH
Soiernstrasse 1

82494 Kriin

Germany

Visit TeamSpeak-Systems on the web at www.teamspeak.com [http://www.teamspeak.com]

License agreement
TeamSpeak 3

LICENSE AGREEMENT

October 25th, 2007

THISISA LEGAL AGREEMENT between "you," the company or end user of TeamSpeak 3 brand software, and TeamSpeak
Systems GmbH, a Kriin, Germany company hereafter referred to as " TeamSpeak Systems'.

Use of the software you are about to install indicates your acceptance of these terms. Y ou also agree to accept these terms by
soindicating at the appropriate screen, prior to the download or installation process. Asused in this Agreement, the capitalized
term " Software”" means the TeamSpeak 3 voice over IP (VolP) communication software together with any and all enhance-
ments, upgrades, and updates that may be provided to you in the future by TeamSpeak Systems. IF YOU DO NOT AGREE
TO THESE TERMS AND CONDITIONS, YOU SHOULD SO INDICATE BY CONTACTING TEAMSPEAK SYSTEMS
AND PROMPTLY DISCONTINUE THE INSTALLATION PROCESS AND USE OF THIS SOFTWARE.

Ownership

The Software and any accompanying documentation are owned by TeamSpeak Systems and ownership of the Software shall
at all times remain with TeamSpeak Systems. Copies are provided to you only to allow you to exercise your rights under this

http://www.teamspeak.com
http://www.teamspeak.com

TeamSpeak 3 Client
SDK Developer Manual

Agreement. This Agreement does not constitute a sale of the Software or any accompanying documentation, or any portion
thereof. Without limiting the generality of the foregoing, you do not receive any rightsto any patents, copyrights, trade secrets,
trademarks or other intellectual property rights relating to or in the Software or any accompanying documentation. All rights
not expressly granted to you under this Agreement are reserved by TeamSpeak Systems.

Grant of License Applicable To TeamSpeak 3

Subject to the terms and conditions set out in this Agreement, TeamSpeak Systems grants you a limited, nonexclusive, non-
transferable and nonsublicensable right to use the Software called "TeamSpeak 3" solely in accordance with the following
terms and conditions:

1. Use of TeamSpeak 3. Y ou may use TeamSpeak 3 on multiple computers owned, leased or rented by you, your company, or
business entity; however, you are the only individual, company, or business entity with the right to use your licensed copy(ies)
of TeamSpeak 3. All copies of TeamSpeak 3 must include TeamSpeak Systems' copyright notice.

2. Disgtribution Prohibited. Y ou may not distribute copies of TeamSpeak 3 for use by anyone other than you, your company,
or business entity. Distribution of TeamSpeak 3 by you to third partiesis hereby expressly prohibited.

3. Fees. Asof thedatelisted abovefor thisLicense Agreement, TeamSpeak 3isina"pre-release” stage. Feesand licensing costs
will be determined when the final version of the product is released or an agreed upon commencement date for commercial
use of the Software isinitiated.

4. Termination. TeamSpeak Systems may terminate your TeamSpeak 3 license at any time, for any reason or no reason.
TeamSpeak Systems may also terminate your TeamSpeak 3 license if you breach any of the terms and conditions set forth
in this Agreement. Upon termination, you shall immediately destroy all copies of TeamSpeak 3 and any accompanying files
or documentation in your possession, custody or control.

5. Support. TeamSpeak Systems will provide you with support services related to TeamSpeak 3 for a period that begins on
the date TeamSpeak 3 is delivered to you, and ends upon the termination of this Agreement.

6. Upgrades. TeamSpeak Systemswill provide you with upgrades to TeamSpeak 3 for a period that begins on the date Team-
Speak 3isdelivered to you. Such upgrades will be released only by TeamSpeak Systems for the purpose of improving Team-
Speak 3 software. TeamSpeak Systems has no obligation to provide you with any upgrades that are not released for genera
distribution to TeamSpeak Systems' other licensees. Nothing in this Agreement shall be construed to obligate TeamSpeak
Systems to provide upgrades to you under any circumstances.

Prohibited Conduct
Y ou represent and warrant that you will not violate any of the terms and conditions set forth in this Agreement and that:

Y ou will not, and will not permit othersto: (i) reverse engineer, decompile, disassemble, derive the source code of, modify, or
create derivative works from the Software; or (ii) use, copy, modify, alter, or transfer, electronically or otherwise, the Software
or any of the accompanying documentation except as expressy permitted in this Agreement; or (iii) redistribute, sell, rent,
lease, sublicense, or otherwise transfer rights to the Software whether in a stand-alone configuration or as incorporated with
other software code written by any party except as expressly permitted in this Agreement.

Y ou will not use the Software to engage in or allow othersto engage in any illegal activity.

Y ou will not engage in use of the Software that will interfere with or damage the operation of the services of third parties by
overburdening/disabling network resources through automated queries, excessive usage or similar conduct.

Y ou will not use the Softwareto engage in any activity that will violate therights of third parties, including, without limitation,
through the use, public display, public performance, reproduction, distribution, or modification of communicationsor materials

TeamSpeak 3 Client
SDK Developer Manual

that infringe copyrights, trademarks, publicity rights, privacy rights, other proprietary rights, or rights against defamation of
third parties.

Y ou will not transfer the Software or utilize the Software in combination with third party software authored by you or others
to create an integrated software program which you transfer to unrelated third parties.

Upgrades, Updates And Enhancements

All upgrades, updates or enhancements of the Software shall be deemed to be part of the Software and will be subject to
this Agreement.

Disclaimer of Warranty

THE SOFTWARE ISPROVIDED ON AN "AS1S' BASIS, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
PLIED, INCLUDING, WITHOUT LIMITATION, THE WARRANTIESTHAT IT IS FREE OF DEFECTS, VIRUS FREE,
ABLE TO OPERATE ON AN UNINTERRUPTED BASIS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE
OR NON-INFRINGING. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL PART OF THIS LI-
CENSE AND AGREEMENT. NO USE OF THE SOFTWARE IS AUTHORIZED HEREUNDER EXCEPT UNDER THIS
DISCLAIMER.

Limitation of Liability

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT WILL TEAMSPEAK SYSTEMS
BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OF OR INABILITY TO USE THE SOFTWARE, INCLUDING, WITHOUT LIMITATION, DAMAGES FOR
LOST PROFITS, LOSS OF GOODWILL, WORK STOPPAGE, COMPUTER FAILURE OR MALFUNCTION, OR ANY
AND ALL OTHER COMMERCIAL DAMAGES OR LOSSES, EVEN IF ADVISED OF THE POSSIBILITY THERE-
OF, AND REGARDLESS OF THE LEGAL OR EQUITABLE THEORY (CONTRACT, TORT OR OTHERWISE) UPON
WHICH THE CLAIM ISBASED. IN ANY CASE, TEAMSPEAK SYSTEMS COLLECTIVE LIABILITY UNDER ANY
PROVISION OF THIS LICENSE SHALL NOT EXCEED IN THE AGGREGATE THE SUM OF THE FEES (IF ANY)
YOU PAID FOR THISLICENSE.

Legends and Notices

Y ou agree that you will not remove or alter any trademark, logo, copyright or other proprietary notices, legends, symbols or
labels in the Software or any accompanying files or documentation.

Term and Termination

This Agreement is effective upon your acceptance as provided herein and payment of the applicable license fees (if any), and
will remain in force until terminated. Y ou may terminate the licenses granted in this Agreement at any time by contacting
TeamSpeak Systemsin writing, and destroying the Software and any accompanying files or documentation, together with any
and all copies thereof. The licenses granted in this Agreement will terminate automatically if you breach any of its terms or
conditions or any of the terms or conditions of any other agreement between you and TeamSpeak Systems. Upon termination,
you shall immediately destroy the original and all copies of the Software and any accompanying documentation, or return
them to TeamSpeak Systems.

Software Suggestions

TeamSpeak Systems welcomes suggestions for enhancing the Software and any accompanying documentation that may re-
sult in computer programs, reports, presentations, documents, ideas or inventions relating or useful to TeamSpeak Systems
business. Y ou acknowledge that all title, ownership rights, and intellectual property rights concerning such suggestions shall
become the exclusive property of TeamSpeak Systems and may be used for its business purposesin its sol e discretion without
any payment or accounting to youl.

TeamSpeak 3 Client
SDK Developer Manual

Miscellaneous

This Agreement constitutes the entire agreement between the parties concerning the Software, and may be amended only by a
writing signed by both parties. This Agreement shall be governed by the laws of Krtin, Germany, excluding its conflict of law
provisions. All disputes relating to this Agreement are subject to the exclusive jurisdiction of the courts within Germany and
you expressly consent to the exercise of personal jurisdiction in the courts of Germany in connection with any such dispute.
This Agreement shall not be governed by the United Nations Convention on Contracts for the International Sale of Goods. If
any provision in this Agreement should be held illegal or unenforceable by a court of competent jurisdiction, such provision
shall be modified to the extent necessary to render it enforceable without losing its intent, or severed from this Agreement if
no such modification is possible, and other provisions of this Agreement shall remain in full force and effect. A waiver by
either party of any term or condition of this Agreement or any breach thereof, in any one instance, shall not waive such term
or condition or any subsequent breach thereof.

Introduction

TeamSpeak 3 is a scalable Voice-Over-IP application consisting of client and server software. TeamSpeak is generally re-
garded as the leading Vol P system offering a superior voice quality, scalability and usability.

The cross-platform Software Development Kit alows the easy integration of the TeamSpeak client and server technology
into own applications.

Tis document provides an introduction to client-side programming with the TeamSpeak 3 SDK, the so-called Client Lib. This
library encapsulates client-side functionality while keeping the user interface separated and modular.

System requirements

For developing third-party clients with the TeamSpeak 3 Client Lib the following system requirements apply:
* Windows
Windows 2000, XP, Vista (32- and 64-bit)
* Mac OS X
Mac OS X 10.4, 10.5 on Intel and PowerPC
* Linux

Any recent Linux distribution with libstdc++ 6. Both 32- and 64-bit are supported.

2 | mportant
The calling convention used in the functions exported by the shared TeamSpeak 3 SDK libariesis cdecl. You
must not use another calling convention, like stdcall on Windows, when declaring function pointersto the Team-
Speak 3 SDK libraries. Otherwise stack corruption at runtime may occur.

Overview of header files

The following header files are deployed to SDK developers:

e clientlib.h

TeamSpeak 3 Client
SDK Developer Manual

Declares the function prototypes and callbacks for the communication between Client Lib and Client Ul. While the Client
Ul makes function calls into the Client Lib using the declared prototypes, the Client Lib calls the Client Ul via callbacks.

e clientlib_publicdefinitions.h

Defines various enums and structs used by the Client Ul and Client Lib. These definitions are used by the functions and
calbacksdeclaredincl i entlib. h

e public_definitions.h
Defines various enums and structs used by both client- and server-side.
e public_errors.h

Definesthe error codes returned by every Client Lib function and onSer ver Er r or Event . Error codes are organized in
several groups. Thefirst byte of the error code defines the error group, the second the count within the group.

Calling Client Lib functions

Client Lib functions follow a common pattern. They always return an error code or ERROR_ok on success. If thereisaresult
variable, it is alwaysthe last variable in the functions parameters list.

ERROR t s3client FUNCNAME(argl, arg2, ..., &esult);

Result variables should only be accessed if the function returned ERROR_ok. Otherwise the state of the result variable is
undefined.

In those cases where the result variable is a basic type (int, float etc.), the memory for the result variable has to be declared
by the caller. Simply pass the address of the variable to the Client Lib function.

int result;

if(ts3client_XXX(argl, arg2, ..., &esult) == ERROR ok) {
/* Use result variable */

} else {

/* Handl e error, result variable is undefined */

}

If the result variable is a pointer type (C strings, arrays etc.), the memory is allocated by the Client Lib function. In that case,
the caller has to rel ease the allocated memory later by usingt s3cl i ent _f r eeMenory. It isimportant to only access and
release the memory if the function returned ERROR_ok. Should the function return an error, theresult variableis uninitialized,
so freeing or accessing it could crash the application.

char* result;

if(ts3client_XXX(argl, arg2, ..., &esult) == ERROR ok) {
/* Use result variable */
ts3client_freeMenory(result); /* Release result variable */
} else {
/* Handl e error, result variable is undefined. Do not access or release it. */

E Note

Client Lib functions are thread-safe. It is possible to access the Client Lib from several threads at the sametime.

}

TeamSpeak 3 Client
SDK Developer Manual

Return code

Client Lib functions that interact with the server take an additional parameter r et ur nCode, which can be used to find
out which action results in a later server error. If you pass a custom string as return code, the onSer ver Er r or Event
callback will receive the same custom string initsr et ur nCode parameter. If no error occured, onSer ver Er r or Event
will indicate success py passing the error code ERROR_ok.

Pass NULL asr et ur nCode if you do not need the feature. In this case, if no error occurs onSer ver Er r or Event will
not be called.

An example, request moving aclient:

ts3client_requestdient Mve(scHandl erl D, clientlD, newChannel D, password, "M/ ientMyveReturnCode");

If an error occurs, theonSer ver Er r or Event calback iscalled:

voi d my_onServer Error Event (ui nt 64 server Connecti onHandl erl D, const char* errorMessage,
unsigned int error, const char* returnCode, const char* extraMessage) {
if(strcnp(returnCode, "M/Cient MoveReturnCode")) == 0) {
/* We know this error is the reaction to above called function as we got the sane returnCode */
if(error == ERROR ok) {
/* Success */

}
}

Initializing
When starting the client, initialize the Client Lib with a call to

unsigned int ts3client_initdientLib(functionPointers, functionRarePointers, used-
LogTypes, | ogFil eFol der, resourcesFol der);

const struct dientU Functions* functionPointers;

const struct dientU FunctionsRare* functionRarePointers;
i nt usedLogTypes;

const char* | ogFil eFol der;

const char* resourcesFol der;

Parameters
e functionPointers
Callback function pointers. See below.
« functionRarePointers
Unused by SDK, passNULL.
e usedLogTypes

Defines the log output types. The Client Lib can output log messages (called by t s3cl i ent _| ogMessage) to afile
(located inthe | ogs directory relative to the client executable), to stdout or to user defined callbacks. If user callbacks are
activated, the onUser Loggi ngMessageEvent event needs to be implemented.

TeamSpeak 3 Client
SDK Developer Manual

Available values are defined by the enum LogTypes (seepubl i c_defi ni ti ons. h):

enum LogTypes {

LogType_NONE = 0x0000,
LogType_FI LE = 0x0001,
LogType_CONSCLE = 0x0002,
LogType_USERLOGE NG = 0x0004,
LogType_NO_NETLOGGE NG = 0x0008,
LogType_DATABASE = 0x0010,

s
Multiple log types can be combined with abinary OR. If only LogType_NONE is used, local logging is disabled.

E Note
Logging to console can slow down the application on Windows. Hence we do not recommend to log to the
console on Windows other than in debug builds.

E Note
LogType NO NETLOGAE NG is no longer used. Previously this controlled if the Client Lib would send
warning, error and critical log entriesto awebserver for analysis. As netlogging does not occur anymore, this
flag has no effect anymore.

LogType DATABASE has no effect in the Client Lib, thisisonly used by the server.
* | ogFi | eFol der

L ocation wherethe logfiles produced if filelogging is enabled will be saved to. PassNULL for the default behaviour, which
istouseafolder called | ogs in the current working directory.

r esour cesFol der

Resource path pointing to the directory where the soundbackends folder is located. Required so your application finds the
sound backend shared libraries. This should usually point to the root or bin directory of your application, depending where
the soundbackends directory is located.

Returns ERROR _ok on success, otherwise an error code asdefined in publ i c_errors. h.

E Note
This function must not be called more than once.

The callback mechanism

The communication from Client Lib to Client Ul takes place using callbacks. The Client Ul has to define a series of function
pointers using the struct ClientUlFunctions (seecl i ent | i b. h). These callbacks are used to forward any incoming server
actions to the Client Ul for further processing.

A calback examplein C:

static void nmy_onConnect St at usChangeEvent _Cal | back(ui nt 64 server Connecti onHandl er| D,
int newsStatus,
int errorNunber) {
/* lnplementation */

TeamSpeak 3 Client
SDK Developer Manual

}

C++ developers can also use static member functions for the callbacks.

Beforecalingt s3cl i ent _initCientLib, createaninstance of struct ClientUlFunctions, initialize all function point-
erswith NULL and assign the structs function pointers to your callback functions:

unsigned int error;

/* Create struct */
Cient U Functions cl U Funcs;

/* Initialize all function pointers with NULL */
menset (&cl U Funcs, 0, sizeof(struct dientU Functions));

/* Assign those function pointers you inplenmented */
cl Ul Funcs. onConnect St at usChangeEvent my_onConnect St at usChangeEvent _Cal | back;
cl Ul Funcs. onNewChannel Event my_onNewChannel Event _Cal | back;

()

/* Initialize client Iib with callback function pointers */
error = ts3client_initdientLib(&cl U Funcs, NULL, LogType_FILE | LogType_CONSOLE);
if(error = ERROR ok) {

printf("Error initializing clientlib: %l\n", error);

()

2 | mportant

Aslong asyouinitialize unimplemented callbackswith NULL, the Client Lib won't attempt to call those function
pointers. However, if you leave unimplemented callbacks undefined, the Client Lib will crash when trying to
calling them.

E Note
All callbacks used in the SDK are found in the struct ClientUIFunctions (see publ i ¢_defi ni ti ons. h).
Callbacks bundled in the struct ClientUIFunctionsRare are not used by the SDK. These callbacks were split in
a separate structs to avoid polluting the SDK headers with code used only internally.

Querying the library version

The complete Client Lib version string can be queried with
unsigned int ts3client_getCientLibVersion(result);

char** result;

Parameters
e result
Address of avariable that receives the clientlib version string, encoded in UTF-8.

Returns ERROR_ok on success, otherwise an error code as defined in publ i ¢_errors. h. If an error occured, the result
string is uninitialized and must not be accessed.

TeamSpeak 3 Client
SDK Developer Manual

A Caution

Theresult string must bereleased usingt s3cl i ent _freeMenor y. If an error has occured, the result string
is uninitialized and must not be released.

To get only the version number, which is a part of the complete version string, call
unsi gned int ts3client_getdientLi bVersionNunber(result);

ui nt 64* result;

Parameters
e result
Address of avariable that receives the clientlib version number.

Returns ERROR _ok on success, otherwise an error code asdefinedinpubl i ¢_errors. h.

Anexampleusingt s3cl i ent _getd i entLi bVersion:

unsigned int error;

char* version;

error = ts3client_getdientLibVersion(&version);

if(error = ERROR ok) {
printf("Error querying clientlib version: %\n", error);
return;

printf("Cient library version: %\n", version); /* Print version */
ts3client_freeMenory(version); /* Release string */

Exampleusingt s3cl i ent _get Cl i ent Li bVer si onNunber :

unsigned int error;

ui nt 64 version;

error = ts3client_getCientLibVersi onNunber (&version);

if(error !'= ERROR ok) {
printf("Error querying clientlib version nunber: %\ n", error);
return;

printf("Client library version nunber: %d\n", version); /* Print version */

Shutting down

Before exiting the client application, the Client Lib should be shut down with

unsigned int ts3client_destroydientLib();

Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

10

TeamSpeak 3 Client
SDK Developer Manual

Make sure to call this function after disconnecting from any TeamSpeak 3 servers. Any call to Client Lib functions after
shutting down has undefined results.

Managing server connection handlers

Before connecting to a TeamSpeak 3 server, anew server connection handler needs to be spawned. Each handler isidentified
by aunique ID (usualy called ser ver Connect i onHandl er | D). With one server connection handler a connection can
be established and dropped multiple times, so for simply reconnecting to the same or ancther server no new handler needs
to be spawned but existing ones can be reused. However, for using multiple connections simultaneously a new handler has
to be spawned for each connection.

To create anew server connection handler and receiveits|D, cal
unsi gned int ts3client_spawnNewServer Connecti onHandl er (port, result);

int port;
ui nt 64* result;

Parameters
e port

Port the client should bind on. Specify zero to let the operating system chose any free port. In most cases passing zero is
the best choice.

If port is specified, the function return value should be checked for ERROR unabl e_t o_bi nd_net wor k_port.
Handle this error by switching to an alternative port until a"free" port is hit and the function returns ERROR_ok.

& Caution

Do not specify anon-zero valuefor por t unlessyou absolutely need aspecific port. Passing zero isthe better
way in most use cases.

* result
Address of avariable that recelves the server connection handler ID.
To destroy a server connection handler, call
unsi gned int ts3client_destroyServer Connecti onHandl er (server Connecti onHandl er | D) ;

ui nt 64 server Connecti onHandl er | D;

Parameters
» server Connecti onHandl er1 D
ID of the server connection handler to destroy.

Both functions return ERROR_ok on success, otherwise an error code asdefinedin publ i ¢_errors. h.

11

TeamSpeak 3 Client
SDK Developer Manual

E | mportant

Destroying invalidates the handler 1D, so it must not be used anymore afterwards. Also do not destroy a server
connection handler ID from within a callback.

Connecting to a server

To connect to aserver, aclient application isrequired to request anidentity from the Client Lib. This string should be requested
only once and then locally stored in the applications configuration. The next time the application connects to a server, the
identity should be read from the configuration and reused again.

unsigned int ts3client _createldentity(result);

char** result;

Parameters
e result
Address of avariable that receives the identity string, encoded in UTF-8.

Returns ERROR_ok on success, otherwise an error code as defined in publ i ¢_errors. h. If an error occured, the result
string is uninitialized and must not be accessed.

A Caution

Theresult string must bereleased usingt s3cl i ent _freeMenory. If an error has occured, the result string
isuninitialized and must not be released.

Once a server connection handler has been spawned and an identity is available, connect to a TeamSpeak 3 server with

unsigned int ts3client_startConnection(serverConnectionHandl erlD, identity, ip,
port, nicknane, defaultChannel Array, defaultChannel Password, serverPassword);

ui nt 64 server Connecti onHandl er | D
const char* identity;

const char* ip;

unsi gned int port;

const char* nicknane;

const char** defaul t Channel Array;
const char* defaul t Channel Passwor d;
const char* serverPassword,;

Parameters

e server Connecti onHandl er| D

12

TeamSpeak 3 Client
SDK Developer Manual

Unique identifier for this server connection. Created witht s3cl i ent _spawnNewSer ver Connect i onHandl er
identity

The clientsidentity. Thisstring hasto be created by callingt s3cl i ent _cr eat el denti t y. Please note an application
should create the identity only once, store the string locally and reuse it for future connections.

ip
Hostname or |P of the TeamSpeak 3 server.

If you pass a hosthame instead of an IP, the Client Lib will try to resolve it to an IP, but the function may block for an
unusually long period of time while resolving is taking place. If you are relying on the function to return quickly, we
recommend to resolve the hostname yourself (e.g. asynchronously) andthencall t s3cl i ent _st art Connecti on with
the IP instead of the hostname.

port

UDP port of the TeamSpeak 3 server, by default 9987. TeamSpeak 3 uses UDP. Support for TCP might be added in the
future.

ni cknane

Onlogin, the client attemptsto take this nickname on the connected server. Note thisis not necessarily the actually assigned
nickname, as the server can modifiy the nickname ("gandalf_1" instead the requested "gandalf") or refuse blocked names.

def aul t Channel Arr ay

String array defining the path to a channel on the TeamSpeak 3 server. If the channel exists and the user has sufficient rights
and supplies the correct password if required, the channel will be joined on login.

To define the path to a subchannel of arbitrary level, create an array of channel names detailing the position of the default

channel (e.g. "grandparent”, "parent", "

mydefault”, ""). The array isterminated with a empty string.

Pass NULL to join the servers default channel.

def aul t Channel Passwor d

Password for the default channel. Pass an empty string if no password is required or no default channel is specified.
server Password

Password for the server. Pass an empty string if the server does not require a password.

All strings need to be encoded in UTF-8 format.

Returns ERROR _ok on success, otherwise an error code asdefined in publ i ¢_er r or s. h. When trying to connect with an
invalid identity, the Client Lib will set the error ERROR cl i ent _coul d_not _val i date_i dentity.

Example code to request a connection to a TeamSpeak 3 server:

unsigned int error;
ui nt 64 scHandl er| D,
char* identity;

error = ts3client_spawnNewServer Connecti onHandl er (&cHandl er| D) ;

13

TeamSpeak 3 Client
SDK Developer Manual

if(error = ERROR ok) {
printf("Error spawni ng server conection handler: %\ n", error);
return;

}

error = ts3client_createldentity(& dentity); /* Application should store and reuse the identity */
if(error = ERROR ok) {

printf("Error creating identity: %\n", error);

return;

}

error = ts3client_startConnection(scHandl erl D,
identity
"my-t eanspeak-server. coni,
9987,
"Gandal f",
NULL, /1 Join servers default channel
"y /1 Enmpty default channel password
"secret"); // Server password
if(error = ERROR ok) {
(.-
}

ts3client_freeMenory(identity); /* Don't need this anynore */

Aftercallingt s3cl i ent _st art Connect i on,theclient will beinformed of the connection status changesby the callback
voi d onConnect St at usChangeEvent (server Connecti onHandl er| D, newSt at us, error Nunber);

ui nt 64 server Connecti onHandl er | D;
i nt newsSt at us;
i nt errorNunber;

Parameters

* newst at us

The new connect state as defined by the enum ConnectStatus:

enum Connect St at us {

STATUS_DI SCONNECTED = 0, //There is no activity to the server, this is the default value

STATUS_CONNECTI NG //We are trying to connect, we haven't got a clientlD yet, we
//haven't been accepted by the server

STATUS_CONNECTED, /] The server has accepted us, we can talk and hear and we got a

/lclientl D, but we don't have the channels and clients yet, we
//can get server infos (welcome nsg etc.)

STATUS_CONNECTI ON_ESTABLI SHI NG // we are CONNECTED and we are visible

STATUS_CONNECTI ON_ESTABLI SHED, //we are CONNECTED and we have the client and channel s avail abl e

b
e error Nunber

Should be ERROR_ok (zero) when connecting

While connecting, the states will switch through the values STATUS CONNECTI NG STATUS_CONNECTED and
STATUS_CONNECTI ON_ESTABLI SHED. Once the state STATUS _CONNECTED has been reached, there the server wel-
come message is available, which can be queried by the client:

* Welcome message

14

TeamSpeak 3 Client
SDK Developer Manual

Query the server variable VI RTUALSERVER WELCOVEMESSAGE for the message text using the function
ts3client_get ServerVari abl eAsStri ng:

char* wel comeMsg;

i f(ts3client_getServerVariabl eAsString(serverConnectionHandl erl D, VI RTUALSERVER VELCOVEMESSAGE, &wel coneMsg)
I = ERROR_ok) {
printf("Error getting server wel come nessage: %\n", error);
return;

}
print ("Wl cone nessage: %\n", welcomeMsg); /* Display nessage */
ts3client_freeMenory(wel comeMsg); /* Rel ease nmenory */

To check if aconnection to a given server connection handler is established, call:
unsi gned int ts3client_getConnectionStatus(server ConnectionHandl erl D, result);

ui nt 64 server Connecti onHandl er | D;
int* result;

Parameters
» server ConnectionHandl er| D
ID of the server connection handler of which the connection state is checked.
* result
Address of avariable that receives the result: 1 - Connected, O - Not connected.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

After the state STATUS_CONNECTED has been reached, the client is assigned an | D which identifies the client on this server.
This ID can be queried with

unsigned int ts3client_getdientlD(serverConnectionHandlerID, result);

ui nt 64 server Connecti onHandl er | D
anyl D* result;

Parameters
» server Connecti onHandl er| D

ID of the server connection handler on which we are querying the own client ID.
e result

Address of avariable that receives the client ID. Client IDs start with the value 1.

15

TeamSpeak 3 Client
SDK Developer Manual

Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

After connection has been established, all current channels on the server are announced to the client. This happenswith delays
to avoid aflood of information after connecting. The client isinformed about the existance of each channel with the following
event:

voi d onNewChannel Event (server Connecti onHandl er1 D, channel | D, channel Parent|D);

ui nt 64 server Connecti onHandl er | D;
ui nt 64 channel | D;
ui nt 64 channel Par ent | D;

Parameters

* server Connecti onHandl erl D
The server connection handler ID.

* channel I D
The ID of the announced channel.

e channel Parent 1D
ID of the parent channel.

Channel |Ds start with the value 1.

The order in which channels are announced by onNewChannel Event isdefined by the channel order as explained in the
chapter Channel sorting.

All clients currently logged to the server are announced after connecting with the callback onCl i ent MoveEvent .

Disconnecting from a server

To disconnect from a TeamSpeak 3 server call
unsi gned int ts3client_stopConnection(serverConnectionHandl erl D, quitMessage);

ui nt 64 server Connecti onHandl er | D;
const char* quitMessage;

Parameters
e server Connecti onHandl er| D
The unique ID for this server connection handler.

e qui t Message

16

TeamSpeak 3 Client
SDK Developer Manual

A message like for example "leaving". The string needs to be encoded in UTF-8 format.
Returns ERROR_ok on success, otherwise an error code asdefined inpubl i ¢_errors. h.

Like with connecting, on successful disconnecting the client will receive an event:

voi d onConnect St at usChangeEvent (ser ver Connecti onHandl er I D, newSt at us, error Nunber);

ui nt 64 server Connecti onHandl er | D
i nt newSt at us;
i nt errorNunber;

Parameters
* newSt at us
Set to STATUS DI SCONNECTED as defined by the enum ConnectStatus.
* error Number
error Nunber isexpected to be ERROR_ok asresponseto callingt s3cl i ent _st opConnecti on.

Vaues other than ERROR ok occur when the connection has been lost for reasons not initiated by the user, e.g. network
error, forcefully disconnected etc.

Should the server be shutdown, the follow event will be called:
voi d onServer St opEvent (server Connecti onHandl er I D, shut downMessage) ;

ui nt 64 server Connecti onHandl er | D
const char* shut downMessage;

Parameters
* server Connecti onHandl erl D

Server connection handler ID of the stopped server.
» shut downMessage

M essage announcing the reason for the shutdown sent by the server. Has to be encoded in UTF-8 format.

Error handling

Each Client Lib function returns either ERROR_ok on success or an error value as defined in publ i c_errors. h if the
function fails.

17

TeamSpeak 3 Client
SDK Developer Manual

The returned error codes are organized in groups, where the first byte defines the error group and the second the count within
the group: The naming convention is ERROR_<group>_<error>, for example ERROR _cl i ent _i nval i d_i d.

Example:

unsigned int error;
char* wel coneMsg;

error = ts3client_getServerVariabl eAsString(server Connecti onHandl er | D,
VI RTUALSERVER_WEL COVEMVESSAGE,
&wel comeMsg) ;

if(error == ERROR ok) {

/* Use wel coneMsg... */
ts3client_freeMenory(wel comeMsg); /* Release nmenory *only* if function did not return an error */
} else {

/* Handle error */
/* Do not access or rel ease wel coneMessage, the variable is undefined */

2 | mportant

Client Lib functionsreturning C-stringsor arraysdynamically allocate memory which hasto befreed by the caller
usingt s3cl i ent _freeMenory.Itisimportant to only accessand releasethememory if thefunction returned
ERRCR_ok. Should the function return an error, the result variable is uninitialized, so freeing or accessing it
could crash the application.

See the section Calling Client Lib functions for additional notes and examples.

A printable error string for a specific error code can be queried with
unsi gned int ts3client_getErrorMssage(errorCode, error);

unsi gned int errorCode;
char** error;

Parameters
* errorCode

The error code returned from all Client Lib functions.
e error

Address of avariablethat receivesthe error message string, encoded in UTF-8 format. Unlessthereturn val ue of thefunction
is not ERROR_ok, the string should be released witht s3cl i ent _freeMenory.

Example:

unsigned int error;
anyl D nyl D;

error = ts3client_getdientlD(scHandl erl D, &wylD); /* Calling some Cient Lib function */
if(error = ERROR 0ok) {
char* errorMsg;

18

TeamSpeak 3 Client
SDK Developer Manual

if(ts3client_getErrorMessage(error, &errorMsg) == ERROR ok) { /* Query printable error */
printf("Error querying client 1D %\n", errorMsg);
ts3client_freeMenory(errorMsg); /* Release nmenory */

In addition to actively querying errors like above, error codes can be sent by the server to the client. In that case the following
event iscalled:

voi d onServer ErrorEvent (server Connecti onHandl erl D, errorMessage, error, returnCode,
ext raMessage) ;

ui nt 64 server Connecti onHandl er | D;
const char* errorMessage;
unsi gned int error;

const char* returnCode;
const char* extraMessage;

Parameters
» server Connecti onHandl er|I D
The connection handler ID of the server who sent the error event.
e errorMessage
String containing a verbose error message, encoded in UTF-8 format.
e error
Error code asdefinedinpubl i ¢_errors. h.
e returnCode
String containing the return code if it has been set by the Client Lib function call which caused this error event.
See return code documentation.
e extraMessage

Can contain additional information about the occured error. If no additional information is available, this parameter is an
empty string.

Logging
The TeamSpeak 3 Client Lib offers basic logging functions:

unsi gned int ts3client | ogMessage(l ogMessage, severity, channel, |oglD);

const char* | ogMessage;
LogLevel severity;

19

TeamSpeak 3 Client
SDK Developer Manual

const char* channel;
ui nt 64 | ogl D

Parameters

* | ogMessage
Text written to log.

e severity

Thelevel of the message, warning or error. Defined by the enum LogLevel incl i ent | i b_publ i cdefiniti ons. h:

enum LogLevel {
LogLevel CRITICAL = 0, //these nessages stop the program

LogLevel _ERROR, /leverything that is really bad, but not so bad we need to shut down
LogLevel _WARNI NG, /'l everything that *m ght* be bad
LogLevel _DEBUG, //output that might help find a problem
LogLevel _I NFQ, /linformational output, like "starting database version x.y.z"
LogLevel _DEVEL /1 devel oper only output (will not be displayed in rel ease node)
}s
e channel

Custom text to categorize the message channel (i.e. "Client", "Sound").
Pass an empty string if unused.
* logl D
Server connection handler ID to identify the current server connection when using multiple connections.
Pass 0 if unused.
All strings need to be encoded in UTF-8 format.
Returns ERROR_ok on success, otherwise an error code asdefinedinpubl i ¢_errors. h.

L og messages can be printed to stdout, logged to afilel ogs/ts3client _[date] _ [time]. | og and sentto user-de-
fined callbacks. Thelog output behaviour isdefined wheninitialzing theclient library witht s3cl i ent _i ni t O i ent Li b.

Unless user-defined logging is used, program execution will halt on alog message with severity LogLevel CRI Tl CAL.

User-defined logging

If user-defined logging was enabled when initialzing the Client Lib by passing LogType_USERLOGG NGtotheusedLog-
Types parameter of t s3client _initdientLib,logmessageswill be sent to the following callback, which allows
user customizable logging and handling or critical errors:

voi d onUser Loggi ngMessageEvent (| ogMessage, | oglLevel, | ogChannel, | ogl D, | ogTi ne, com
pl et eLogString);

const char* | ogMessage;

20

TeamSpeak 3 Client
SDK Developer Manual

int |oglLevel;

const char* | ogChannel ;

ui nt 64 | ogl D

const char* | ogTi ne;

const char* conpl etelLogStri ng;

Most callback parameters reflect the arguments passed to the| ogMessage function.

Parameters
* | ogMessage

Actual log message text.
* | ogLevel

Severity of log message, defined by the enum LogL evel. Note that only log messages of alevel higher than the one config-
ured witht s3cl i ent _set LogVer bosi t y will appear.

* | ogChannel
Optional custom text to categorize the message channel.
« logl D
Server connection handler ID identifying the current server connection when using multiple connections.
* | ogTi ne
String with date and time when the log message occured.
e conpl eteLogString

Provides a verbose log message including all previous parameters for convinience.

The severity of log messages that are passed to above callback can be configured with:
unsi gned int ts3client_setlLogVerbosity(l ogVerbosity);

enum LogLevel | ogVerbosity;

Parameters
* logVerbosity

Only messages with alog level equal or higher than | ogVer bosi ty will be sent to the callback. The default value is
LoglLevel DEVEL.

For example, after calling

21

TeamSpeak 3 Client
SDK Developer Manual

ts3client_setLogVerbosity(LogLevel ERROR);

only log messages of level LogLevel _ERRORand LogLevel _CRI TI CAL will be passed to onUser Loggi hgMes-
sageEvent.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

Using playback and capture modes and devices

TheClient Lib takes care of initializing, using and rel easing sound playback and capture devices. Accessing devicesis handled
by the sound backend shared libraries, found in the soundbackends directory inthe SDK. There are different backends available
on the supported operating systems: DirectSound and Windows Audio Session APl on Windows, Alsa and PulseAudio on
Linux, CoreAudio on Mac OS X.

All strings passed to and from the Client Lib have to be encoded in UTF-8 format.

Initializing modes and devices

Toinitialize a playback and capture device for a TeamSpeak 3 server connection handler, call

unsigned int ts3client_openPl aybackDevi ce(server Connecti onHandl erI D, nodel D, pl ay-
backDevi ce);

ui nt 64 server Connecti onHandl er | D;
const char* nodel D
const char* pl aybackDevi ce;

Parameters
* server Connecti onHandl erl D

Connection handler of the server on which you want to initialize the playback device.
* nodel D

The playback mode to use. Valid modes are returned by ts3client _get Def aul t Pl ayBackMode and
ts3client _get Pl aybackModeli st .

Passing an empty string will use the default playback mode.
* pl aybackDevi ce
Valid parameters are:
» Thedevi ce parameter returned by t s3cl i ent _get Def aul t Pl aybackDevi ce
» Oneof thedevi ce parametersreturned by t s3cl i ent _get Pl aybackDevi celi st
» Empty string to initialize the default playback device.

 Linux with Alsaonly: Custom device namein the form of e.g. “hw:1,0”.

22

TeamSpeak 3 Client
SDK Developer Manual

The string needs to be encoded in UTF-8 format.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors. h. A likely error is
ERROR _sound_coul d_not _open_pl ayback_devi ce if the sound backend fails to find a usable playback device.

unsi gned int ts3client_openCaptureDevi ce(server Connecti onHandl er| D, nodel D, capt ure-
Devi ce);

ui nt 64 server Connecti onHandl er | D;

const char* nodel D;
const char* captureDevice;

Parameters
» server ConnectionHandl erl D

Connection handler of the server on which you want to initialize the capture device.
* nodel D

The capture mode to use. Vaid modes are returned by ts3client_get Def aul t Capt ureMode and
ts3client _get Capt ureModeli st.

Passing an empty string will use the default capture mode.
e captureDevice

Vaid parameters are:

» Thedevi ce parameter returned by t s3cl i ent _get Def aul t Capt ur eDevi ce

e Oneof thedevi ce parametersreturned by t s3cl i ent _get Capt ur eDevi celLi st

» Empty string to initialize the default capture device. Encoded in UTF-8 format.

 Linux with Alsaonly: Custom device namein the form of e.g. “hw:1,0”.
Returns ERROR ok on success, otherwise an error code as defined in public_errors.h. Like
ly errors are ERROR sound_coul d_not _open_capture_device if the device fails to open or

ERROR_sound_handl er _has_devi ce if the device is already opened. To avoid this problem, it is recommended to
close the capture device before opening it again.

Querying available modes and devices

Various playback and capture modes are available: DirectSound on all Windows platforms, Windows Audio Session APl for
Windows Vista and Windows 7; Alsaand PulseAudio on Linux; CoreAudio on Mac OS X.

Available device names may differ depending on the current mode.

The default playback and capture modes can be queried with:

23

TeamSpeak 3 Client
SDK Developer Manual

unsi gned int ts3client_getDefaultPl ayBackMdde(result);

char** result;

unsi gned int ts3client_getDefaultCapturehMde(result);

char** result;

Parameters

* result
Address of a variable that receives the default playback or capture mode. The value can be used as parameter for
the functions querying and opening devices. Unless the function returns an error, the string must be released using

ts3client_freeMenory.

Returns ERROR _ok on success, otherwise an error code asdefinedinpubl i ¢_errors. h.

All available playback and capture modes can be queried with:
unsi gned int ts3client_getPl aybackModelList(result);

char*** result;

unsi gned int ts3client_getCapturehMdelist(result);

char*** result;

Parameters
* result
Address of avariable that receives a NULL-terminated array of C-strings listing available playback or capture modes.

Unlessthe function returns an error, the caller must release each element of the array (the C-string) and finally the compl ete
array witht s3cl i ent _freeMenory.

Returns ERROR_ok on success, otherwise an error code as defined in publ i ¢_errors. h. In case of an error, the result
array isuninitialized and must not be accessed or released.

Example to query all available playback modes:

char** array;

24

TeamSpeak 3 Client
SDK Developer Manual

if(ts3client_getPlaybackModelLi st (&array) == ERROR ok) {
for(int i=0; array[i] != NULL; ++i) {
printf("Mde: %\n", array[i]);
ts3client_freeMenory(array[i]); // Free Cstring

}

ts3client_freeMenory(array); // Free the array

Playback and capture devices available for the given mode can be listed, as well as the current operating systems default. The
returned device values can be used to initialize the devices.

To query the default playback and capture device, call
unsi gned int ts3client_getDefaultPlaybackDevi ce(nodel D, result);

const char* nodel D
char*** result;

unsi gned int ts3client_getDefaultCaptureDevice(nodelD, result);

const char* nodel D
char*** result;

Parameters
* node

Defines the playback/capture mode to use. For different modes there might be different default devices. Valid
modesarereturnedbyt s3cl i ent _get Def aul t Pl ayBackMbde /t s3cl i ent _get Def aul t Capt ur eMode and
ts3client _get Pl aybackMdeli st /t s3cl i ent_get Capt ur eMbdeli st.

e result

Address of avariable that receives an array of two C-strings. The first element contains the device name, the second the
device ID.

Unless the function returns an error, the caller must free the two array elements and the complete array with
ts3client _freeMenory.

Returns ERROR_ok on success, otherwise an error code as defined in publ i c_errors. h. In case of an error, the result
array isuninitialized and must not be released.

Example to query the default playback device:
char* def aul t Mode;
/* Get default playback node */

if(ts3client_getDefaul t Pl ayBackMode(&def aul t Mode) == ERROR ok) {
char** defaul t Pl aybackDevi ce;

25

TeamSpeak 3 Client
SDK Developer Manual

/* Get default playback device */

if(ts3client_getDefaul t Pl aybackDevi ce(defaul t Mode, &defaul t Pl aybackDevice) == ERROR ok) {
printf("Default playback device name: %\n", defaultPlaybackDevice[0]); /* First elenment: Device nane */
printf("Default playback device ID: %\n", def aul t Pl aybackDevice[1]); /* Second elenent: Device ID */

/* Rel ease the two array elenments and the array */
ts3client _freeMenory(defaul t Pl aybackDevice[0]);
ts3client _freeMenory(defaul t Pl aybackDevice[1]);
ts3client _freeMenory(defaul t Pl aybackDevi ce);
} else {
printf("Failed to get default playback device\n");
} else {
printf("Failed to get default playback node\n");
}

To get alist of all available playback and capture devices for the specified mode, call
unsi gned int ts3client_getPl aybackDevi celLi st (nodel D, result);

const char* nodel D
char**** result;

unsi gned int ts3client_getCaptureDevicelList(nodelD, result);

const char* nodel D
char**** result;

Parameters
* npdel D

Defines the playback/capture mode to use. For different modes there might be different device lists. Valid modes
are returned by ts3client get Def aul t Pl ayBackMode / ts3client get Def aul t Capt ur eMode and
ts3client _get Pl aybackMbdeLi st /ts3client_ get Capt ureMbdelLi st.

e result

Address of avariablethat receivesaNULL-terminated array { { char* deviceName, char* devicelD }, { char* deviceName,
char* devicelD }, ..., NULL }.

Unless the function returns an error, the elements of the array and the array itself need to be freed using
ts3client _freeMenory.

Returns ERROR_ok on success, otherwise an error code as defined in publ i ¢_errors. h. In case of an error, the result
array isuninitialized and must not be released.

Example to query all available playback devices:

char* def aul t Mode;

26

TeamSpeak 3 Client
SDK Developer Manual

if(ts3client_getDefaul t Pl ayBackMbde(&def aul t Mode) == ERROR ok) {
char*** array;
if(ts3client_getPlaybackDevi celLi st (defaul t Mode, &array) == ERROR ok) {
for(int i=0; array[i] != NULL; ++i) {
printf("Playback device nanme: %\n", array[i

[0]); [/* First elenent: Device name */
[1]); [/* Second elenent: Device ID */

i
printf("Playback device ID: 9%\n", array[i]
/* Free elenent */

ts3client_freeMenory(array[i][
ts3client_freeMenory(array[i][
ts3client_freeMenory(array[i])

0]);

11);

}

ts3client_freeMenory(array); /* Free conplete array */

} else {
printf("Error getting playback device list\n");

} else {
printf("Error getting default playback node\n");
}

Checking current modes and devices

The currently used playback and capture modes for a given server connection handler can be checked with:
unsi gned int ts3client_getCurrentPl ayBackModde(server ConnectionHandl erlI D, result);

ui nt 64 server Connecti onHandl er | D;
char** result;

unsi gned int ts3client_getCurrent Capt ureMde(server Connecti onHandl erI D, result);

ui nt 64 server Connecti onHandl er| D;
char** result;

Parameters
* server Connecti onHandl er| D

ID of the server connection handler for which the current playback or capture modes are queried.
* result

Address of a variable that receives the current playback or capture mode. Unless the function returns an error, the string
must bereleased usingt s3cl i ent _freeMenory.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

Check the currently used playback and capture devices for a given server connection handler with:

27

TeamSpeak 3 Client
SDK Developer Manual

unsigned int ts3client_getCurrentPl aybackDevi ceNane(server ConnectionHandl erI D, re-
sult, isDefault);

ui nt 64 server Connecti onHandl er | D;

char** result;
int* isDefault;

unsi gned int ts3client_getCurrent CapturebDevi ceNanme(server Connecti onHandl erl D, re-
sult, isDefault);

ui nt 64 server Connecti onHandl er | D;

char** result;
int* isDefault;

Parameters
» server ConnectionHandl er| D

ID of the server connection handler for which the current playback or capture devices are queried.
* result

Address of a variable that receives the current playback or capture device. Unless the function returns an error, the string
must be released usingt s3cl i ent _freeMenory.

e result

Address of a variable that receives a flag if this device is the default playback/capture device. If thisis not needed, pass
NULL instead.

Returns ERROR _ok on success, otherwise an error code as defined in publ i c_errors. h. If an error has occured, the
result string is uninitialized and must not be rel eased.

Closing devices
To close the capture and playback devices for a given server connection handler:
unsi gned int ts3client_cl oseCapturebDevi ce(server Connecti onHandl erl D) ;

ui nt 64 server Connecti onHandl er | D;

unsi gned int ts3client_cl osePl aybackDevi ce(server Connecti onHandl erl D);

ui nt 64 server Connecti onHandl er | D

28

TeamSpeak 3 Client
SDK Developer Manual

Parameters
e server Connecti onHandl er|I D
ID of the server connection handler for which the playback or capture device should be closed.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

ts3client_cl osePl aybackDevi ce will not block until al current sounds have finished playing but will shutdown
the device immediately, possibly interrupting the still playing sounds. To shutdown the playback device more gracefully, use
the following function:

unsigned int ts3client _initiateG aceful Pl aybackShut down(server Connecti onHandl erl D);

ui nt 64 server Connecti onHandl er | D;

Parameters
» server Connecti onHandl er|I D
ID of the server connection handler for which the playback or capture device should be shut down.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

Whilet s3client _initiateG aceful Pl aybackShut down will not block until all sounds have finished playing,
too, it will notify the client when the playback device can be safely closed by sending the callback:

voi d onPl aybackShut downConpl et eEvent (server Connecti onHandl er I D) ;

ui nt 64 server Connecti onHandl er | D;

Parameters
* server Connecti onHandl erl D
ID of the server connection handler on which the playback device has been shut down.

Example code to gracefully shutdown the playback devicef:

/* Instead of calling ts3client_closePl aybackDevice() directly */

if(ts3client_initiateG aceful Pl aybackShut down(current ScHandl erl D) ! = ERROR ok) {
printf("Failed to initiate graceful playback shutdown\n");
return;

}

/* Event notifying the playback devi ce has been shutdown */

29

TeamSpeak 3 Client
SDK Developer Manual

voi d nmy_onPl aybackShut downConpl et eEvent (ui nt 64 scHandl er1 D) {
/* Now we can safely close the device */
if(ts3client_cl osePl aybackDevi ce(scHandl erI D) != ERROR ok) {
printf("Error closing playback device\n");

}

E | Note
Devices are closed automatically when callingt s3cl i ent _dest r oySer ver Connect i onHandl er.

§ Note

To change adevice, closeit first and then reopen it.

Using custom devices

Instead of opening existing sound devices that TeamSpeak has detected, you can aso use our custom capture and
playback mechanism to alow you to override the way in which TeamSpeak does capture and playback. When
you have opened a custom capture and playback device you must regularly supply new "captured" sound data
via the t s3cl i ent _processCust onCapt ur eDat a function and retrieve data that should be "played back" via
ts3client _acquireCust onPl aybackDat a. Where exactly this captured sound data comes from and where the play-
back data goesto is up to you, which allows alot of cool things to be done with this mechanism.

Implementing own custom devicesis for special use cases and entirely optional .
Registering a custom device announces the device ID and name to the Client Lib. Once a custom device has been regis-
tered under adevice ID, the device can be opened like any standard device witht s3cl i ent _openCapt ur eDevi ce and

ts3client _openPl aybackDevi ce.

void ts3client_registerCustonDevi ce(devicel D, devi ceDi spl ayNane, capFr equency,
capChannel s, pl ayFrequency, playChannels);

const char* devicel D

const char* devi ceD spl ayNane;
i nt capFrequency;

i nt capChannel s;

i nt playFrequency;

i nt playChannel s;

Parameters
* devicel D
ID string of the custom device, under which the device can be later accessed.
» devi ceDi spl ayNane
Displayed name of the custom device. Freely choose a name which identifies your device.

e capFrequency

30

TeamSpeak 3 Client
SDK Developer Manual

Frequency of the capture device.
e capChannel s
Number of channels of the capture device.
* pl ayFrequency
Frequency of the playback device.
e pl ayChannel s
Number of channels of the playback device.

Returns ERROR_ok on success, otherwise an error code asdefinedin publ i ¢_errors. h.

Unregistering a custom device will automatically close the device:
voi d ts3client_unregisterCustonDevi ce(devicel D);

const char* devicel D;

Parameters
e devicelD

ID string of the custom device to unregister. This is the ID under which the device was registered with
ts3client _registerCustonbDevice.

Returns ERROR _ok on success, otherwise an error code asdefined inpubl i ¢_errors. h.

To send the captured data from your device to the Client Lib:
voi d ts3client_ processCust onCapt ur eDat a(devi cel D, buffer, sanples);

const char* devicel D;
const short* buffer;
i nt sanpl es;

Parameters
e devicelD

ID string of the custom devicee This is the ID under which the device was registered with
ts3client _registerCustonbDevice.

e buffer

31

TeamSpeak 3 Client
SDK Developer Manual

Capture data buffer containing the data captured by the custom device.
e sanpl es
Size of the capture data buffer.

Returns ERROR _ok on success, otherwise an error code asdefined inpubl i ¢_errors. h.

Retrieve playback data from the Client Lib:
voi d ts3client_acquireCust onPl aybackDat a(devi cel D, buffer, sanples);
const char* devicel D,

const short* buffer;
i nt sanpl es;

Parameters
* devicel D

ID string of the custom devicee This is the ID under which the device was registered
ts3client _registerCustonbDevice.

e buffer
Buffer containing the playback data retrieved from the Client Lib.
e sanpl es

Size of the playback data buffer.

with

Returns ERROR_ok if playback datais available or ERROR _sound_no_dat a if the Client Lib currently has no playback

data.

Thereturnvalue ERROR_sound_no_dat a can beused for performance optimisation, it meansthereiscurrently only silence
(nobody istalking, no wave files being played etc.) and instead of returning abuffer full of zeroesit just notifies the user there
is currently no data, which allows you to not playback any sound data for that moment, if your API supports that (potentially
saving some CPU), or to just fill the sound buffer with zeroes and playback thisif your sound API demands you to fill it with

something for every given time.

Overview on registering and opening a custom device;

/* Register a new custom sound device with specified frequency and nunmber of channels */

if(ts3client_registerCustonDevice("customMveDeviceld", "N ce displayabl e wave device nane", captureFrequency,

printf("Failed to register custom device\n");

}

/* Open capture device we created earlier */
if(ts3client_openCaptureDevi ce(scHandl erl D, "custoni, "customMveDeviceld") != ERROR ok) {

32

capt

TeamSpeak 3 Client
SDK Developer Manual

printf("Error opening capture device\n");

}

/* Open pl ayback device we created earlier */
i f(ts3client_openPl aybackDevi ce(scHandl erI D, "custoni, "customtaveDeviceld") != ERROR ok) {
printf("Error opening playback device\n");

}

/* Main | oop */
whi | e(!abort) {
/* Fill captureBuffer fromyour custom device */

/* Streamyour capture data to the client lib */
if(ts3client_processCustonCapturebData("customMveDevi cel d*, captureBuffer, captureBufferSize) != ERROR ok) {
printf("Failed to process capture data\n");

}

/* Get playback data fromthe client lib */
error = ts3client_acquireCustonPl aybackDat a("cust omMaveDevi cel d", pl aybackBuffer, playbackBufferSize);
if(error == ERROR 0k) {
/* Playback data avail abl e, send pl aybackBuffer to your custom device */
} else if(error == ERROR sound_no_data) {
/* Not an error. The client Iib has no playback data avail abl e. Depending on your custom sound API, either
pause pl ayback for performance optimisation or send a buffer of zeros. */
} else {
printf("Failed to get playback data\n"); /* Error occured */

}
}

/* Unregister the customdevice. This automatically close the device. */
if(ts3client_unregisterCustonmDevi ce("custonmaveDeviceld') != ERROR ok) {
printf("Failed to unregister customdevice\n");

}

E Note

Further sample code on how to use a custom device can befound in the“client_customdevice” exampleincluded
in the SDK.

Activating the capture device

E Note

Using this function is only required when connecting to multiple servers.
When connecting to multiple servers with the same client, the capture device can only be active for one server at the same
time. As soon as the client connectsto anew server, the Client Lib will deactivate the capture device of the previously active
server. When a user wantsto talk to that previous server again, the client needs to reactivate the capture device.

unsigned int ts3client_activateCaptureDevice(server Connecti onHandl erl D);

ui nt 64 server Connecti onHandl er | D;

Parameters

e server Connecti onHandl er| D

33

TeamSpeak 3 Client
SDK Developer Manual

ID of the server connection handler on which the capture device should be activated.
Returns ERROR_ok on success, otherwise an error code asdefinedinpubl i ¢_errors. h.
If the capture device is already active, this function has no effect.

Opening a new capture device will automatically activate it, so calling this function is only necessary with multiple server
connections and when reactivating a previously deactivated device.

If the capture device for a given server connection handler has been deactivated by the Client
Lib, the flag CLIENT_ I NPUT_HARDWARE will be set. This can be queried with the function
ts3client _getdientSel fVariabl eAsl nt.

Sound codecs

TeamSpeak 3 supports three different sound sampling rates:
* Speex Narrowband (8 kHz)
* Speex Wideband (16 kHz)

* Speex Ultra-Wideband (32 kHz)

Bandwidth usage generally depends on the encoders quality setting.

Quality Narrowband bitrate (bps) Wideband bitrate (bps) Ultra-Wideband
bitrate (bps)

0 2,150 3,950 5,750

1 3,950 5,750 7,550

2 5,950 7,750 9,550

3 8,000 9,800 11,600
4 8,000 12,800 14,600
5 11,000 16,800 18,600
6 11,000 20,600 22,400
7 15,000 23,800 25,600
8 15,000 27,800 29,600
9 18,200 34,400 36,200
10 24,600 42,400 44,200

The availability of the 8 kHz narrowband codec should cater for the needs of low-bandwidth users at the cost of overall sound
quality.

Users need to use the same codec when talking to each others. The smallest unit of participants using the same codec isachan-
nel. Different channels on the same TeamSpeak 3 server can use different codecs. The channel codec should be customizable
by the usersto alow for flexibility concerning bandwidth vs. quality concerns.

TeamSpeak 3 Client
SDK Developer Manual

The codec can be set or changed for a given channel using the functiont s3cl i ent _set Channel Vari abl eAsl nt by
passing CHANNEL _ CODEC for the properties flag:

ts3client _set Channel Vari abl eAsl nt (scHandl erI D, channel I D, CHANNEL_CCDEC, codec);

For the argument codec pass a value of 0 for Narrowband (8 kHz), 1 for Wideband (16 kHz) and 2 for Ultra-Wideband
(32 kHz).

For details on using the function t s3cl i ent _set Channel Vari abl eAsl nt see the appropriate section on changing
channel data

Encoder options

Speech quality and bandwidth usage depend on the used Speex encoder. As Speex is a lossy code, the quality value
controls the balance between voice quality and network traffic. Valid quality values range from 0 to 10, default is 7.
The encoding quality can be configured for each channel using the CHANNEL CODEC QUALI TY property. The cur-
rently used channel codec, codec quality and estimated average used bitrate (without overhead) can be queried with
ts3client _get EncodeConfi gVal ue.

E Note
Encoder options are tied to a capture device, so querying the values only makes sense after a device has been
opened.

All strings passed from the Client Lib are encoded in UTF-8 format.

unsigned int ts3client_get EncodeConfi gVal ue(serverConnectionHandl erl D, ident, re-
sult);

ui nt 64 server Connecti onHandl er | D;

const char* ident;
char** result;

» server Connecti onHandl er| D

Server connection handler ID
e ident

String containing the queried encoder option. Available values are “name”, “quality” and “bitrate’.
* result

Address of a variable that receives the result string. Unless an error occured, the result string must be released using
ts3client_freeMenory.

Returns ERROR _ok on success, otherwise an error code as defined in publ i ¢c_errors. h. If an error has occured, the
result string is uninitialized and must not be rel eased.

To adjust the channel codec quality to avalue of 5, you would call:

t s3cl i ent _set Channel Vari abl eAsl nt (scHandl er1 D, channel | D, CHANNEL_CODEC QUALI TY, 5);

35

TeamSpeak 3 Client
SDK Developer Manual

See the chapter about channel information for details about how to set channel variables.

To query information about the current channel quality, do:

char *name, *quality, *bitrate;

t s3cl i ent _get EncodeConfi gVal ue(scHandl erI D, "nane", &nane);

t s3cl i ent _get EncodeConfi gVal ue(scHandl erI D, "quality", &quality);

t s3cl i ent _get EncodeConfi gVal ue(scHandl erI D, "bitrate", &bitrate);
printf("Nane = %, quality = %, bitrate = %\n", nanme, quality, bitrate);
ts3client _freeMenory(nane);

ts3client_freeMenory(quality);
ts3client_freeMenory(bitrate);

Preprocessor options

Sound input is preprocessed by the Client Lib before the datais encoded and sent to the TeamSpeak 3 server. The preprocessor
is responsible for noise suppression, automatic gain control (AGC) and voice activity detection (VAD).

The preprocessor can be controlled by setting various preprocessor flags. These flags are unique to each server connection.

§ Note
Preprocessor flags are tied to a capture device, so changing the values only makes sense after a device has been
opened.

Preprocessor flags can be queried using

unsi gned int ts3client_getPreProcessor ConfigVal ue(server Connecti onHandl erl D, ident,
result);

ui nt 64 server Connecti onHandl er | D;

const char* ident;
char** result;

Parameters
* server Connecti onHandl erl D
The server connection handler ID.
* ident
The proprocessor flag to be queried. The following keys are available:
* “name’
Type of the used preprocessor. Currently this returns a constant string “ Speex preprocessor”.

» “denoise’

Check if noise suppression is enabled. Returns “true” or “false”.

36

TeamSpeak 3 Client
SDK Developer Manual

o “vad”
Check if Voice Activity Detection is enabled. Returns “true” or “false”.
» “voiceactivation level”
Checks the VVoice Activity Detection level in decibel. Returns a string with a numeric value, convert thisto an integer.
e “vad_extrabuffersize”
Checks Voice Activity Detection extrabuffer size. Returns a string with a numeric value.
° ¢ agc"
Check if Automatic Gain Control is enabled. Returns “true” or “false”.
* “agc level”
Checks AGC level. Returns a string with a numeric value.
e “agc_max_gain”
Checks AGC max gain. Returns a string with a numeric value.

e result

Address of avariable that receives the result as a string encoded in UTF-8 format. If no error occured the returned string
must bereleased usingt s3cl i ent _freeMenory.

Returns ERROR _ok on success, otherwise an error code as defined in publ i c_errors. h. If an error has occured, the
result string is uninitialized and must not be released.

To configure the proprocessor use

unsi gned int ts3client_setPreProcessor ConfigVal ue(server Connecti onHandl erI D, ident,
val ue) ;

ui nt 64 server Connecti onHandl er | D;

const char* ident;
const char* val ue;

Parameters

» server Connecti onHandl er| D
The server connection handler ID.

« ident

The preprocessor flag to be configure. The following keys can be changed:

37

TeamSpeak 3 Client
SDK Developer Manual

* “denoise”

Enable or disable noise suppression. Value can be “true’ or “false”. Enabled by default.
o “vad”

Enable or disable Voice Activity Detection. Value can be “true” or “false”. Enabled by default.
» “voiceactivation level”

Voice Activity Detection level in decibel. Numeric value converted to string. A high voice activation level means you
have to speak louder into the microphone in order to start transmitting.

Reasonabl e values range from -50 to 50. Default is 0.

To adjust the VAD level inyour client, you cancall t s3cl i ent _get Pr ePr ocessor | nf oVal ueFl oat withthe
identifier “decibel_last_period” over aperiod of time to query the current voice input level.

e “vad_extrabuffersize”

VoiceActivity Detection extrabuffer size. Numeric value converted to string. Should be“0” to“8”, defaultsto“2". Lower
value means faster transmission, higher value means better VAD quality but higher latency.

“ Ul

. “agc
Enable or disable Automatic Gain Control. Vaue can be “true”’ or “false”. Enabled by default.
» “agc level”
AGC level. Numeric value converted to string. Default is“16000”.
e “agc_max_gain”
AGC max gain. Numeric value converted to string. Default is*30".
* val ue
String value to be set for the given preprocessor identifier. In case of on/off switches, use “true” or “false”.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

E Note
It isnot necessary to change al those values. The default values are reasonable. “voiceactivation_level” is often
the only value that needs to be adjusted.

The following function retrieves preprocessor information as a floating-point variable instead of a string:

unsi gned i nt ts3client _get PreProcessorl| nfoVal ueFl oat (server Connecti onHandl er | D,
ident, result);

ui nt 64 server Connecti onHandl er | D
const char* ident;

38

TeamSpeak 3 Client
SDK Developer Manual

float* result;

Parameters

» server Connecti onHandl er|I D
The server connection handler ID.

* ident

The proprocessor flag to be queried. Currently the only valid identifier for thisfunction is“decibel _last_period”, which can
be used to adjust the VAD level as described above.

e result
Address of avariable that receives the result value as afloat.

Returns ERROR _ok on success, otherwise an error code asdefined inpubl i ¢_errors. h.

Playback options

Sound output can be configured using playback options. Currently the output value can be adjusted.
Playback options can be queried:

unsi gned i nt ts3client _get Pl aybackConfi gVal ueAsFl oat (server Connecti onHandl er | D,
i dent, result);

ui nt 64 server Connecti onHandl er | D;
const char* ident;
float* result;

Parameters
* server Connecti onHandl erl D

ID of the server connection handler for which the playback option is queried.
« ident

Identifier of the parameter to be configured. Possible values are:

» “volume_modifier”

Modify the voice volume of other speakers. Valueisin decibel, so 0 is no modification, negative values make the signal
quieter and values greater than zero boost the signal louder than it is. Be careful with high positive values, as you can
really cause bad audio quality dueto clipping. The maximum possible Valueis 30.

Zero and al negative values cannot cause clipping and distortion, and are preferred for optimal audio quality. Vaues
greater than zero and less than +6 dB might cause moderate clipping and distortion, but should still be within acceptable

39

TeamSpeak 3 Client
SDK Developer Manual

bounds. Values greater than +6 dB will cause clipping and distortion that will negatively affect your audio quality. Itis
advised to choose lower values. Generally we recommend to not allow values higher than 15 db.

» “volume factor_wave”
Adjust the volume of wave files played by ts3client playWaveFil e and
ts3client _playWaveFi | eHandl e. Thevalueisafloat defining the volume reduction in decibel. Reasonable val-
ues range from “-40.0" (very silent) to “0.0” (loudest).
* result

Address of avariable that receives the playback configuration value as floating-point number.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

To change playback options, call:

unsi gned int ts3client_setPl aybackConfi gVal ue(server Connecti onHandl erI D, ident, val -
ue);

ui nt 64 server Connecti onHandl er | D

const char* ident;
const char* val ue;

Parameters
» server ConnectionHandl er| D

ID of the server connection handler for which the playback option is queried.
e ident

Identifier of the parameter to be configured. The values ae the same as in
ts3client _get Pl aybackConfi gVal ueAsFl oat above.

* val ue
String with the value to set the option to, encoded in UTF-8 format.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

§ Note
Playback options aretied to a playback device, so changing the values only makes sense after a device has been
opened.

Example code;

unsigned int error;
fl oat val ue;

40

TeamSpeak 3 Client
SDK Developer Manual

if((error = ts3client_setPlaybackConfigVal ue(scHandl erI D, "volune_nodifier", "5.5")) !'= ERROR ok) {
printf("Error setting playback config value: %\n", error);
return;

}

if((error = ts3client_getPl aybackConfi gVal ueAsFl oat (scHandl erI D, "vol ume_nodifier", &value)) != ERROR ok) {

printf("Error getting playback config value: %\n", error);
return;

}

printf("Volume nodifier playback option: %\n", value);

In addition to changing the global voice volume modifier of all speakers by changing the “volume_modifier” parameter, voice
volume of individual clients can be adjusted with:

unsigned int ts3client_setdientVol uneMdifier(serverConnectionHandl erl D, clientlD,
val ue) ;

ui nt 64 server Connecti onHandl er | D

anyl D clientlD;
fl oat val ue;

Parameters
» server Connecti onHandl erl D
ID of the server connection handler on which the client volume modifier should be adjusted.
e clientlD
ID of the client whose volume modifier should be adjusted.
* val ue
The new client volume modifier value as float.
Returns ERROR_ok on success, otherwise an error code asdefined in publ i ¢_errors. h.
When calculating the volume for individual clients, both the global and client volume modifiers will be taken into account.
Client volume modifiers are valid as long as the specified client is visible. Once the client leaves visihility by joining an
unsubscribed channel or disconnecting from the server, the client volume modifier will belost. When the client entersvisibility

again, the modifier has to be set again by calling this function.

Example:

unsigned int error;
anylD clientI D = 123;
float value = 10.0f;

if((error = ts3client_setdientVoluneMdifier(scHandl erI D, clientlD, value)) != ERROR ok) {

41

TeamSpeak 3 Client
SDK Developer Manual

printf("Error setting client volume nodifier: %\n", error);
return;

}

Accessing the voice buffer

The TeamSpeak Client Lib allows users to acces the raw playback and capture voice data and even modify it, for exampleto
add effects to the voice. These callbacks are also used by the TeamSpeak client for the voice recording feature.

Using these low-level callbacksis not required and should be reserved for specific needs. Most SDK applications won't need
to implement these callbacks.

This event is called when a voice packet from a client (not own client) is decoded and about to be played over your sound
device, but before it is 3D positioned and mixed with other sounds.

Y ou can use this function to ater the voice data (for example when you want to do effects on it) or to ssimply get voice data.
The TeamSpeak client uses this function to record sessions.

voi d onEdi t Pl aybackVoi ceDat aEvent (server Connecti onHandl er1 D, clientlD, sanmples, sam
pl eCount, channel s);

ui nt 64 server Connecti onHandl er | D;
anyl D clientlD
short* sanpl es;

i nt sanpl eCount ;
i nt channel s;

Parameters
* server Connecti onHandl erl D
ID of the server connection handler from which the voice data was sent.
e clientlD
ID of the client whose voice data is received.
e sanpl es
Pointer to the voice data (signed 16 bit @ 48KHz).
e sanpl eCount
Number of samplesthe "samples' variable points to.
« channel s

Number of channelsin the sound data. Currently always 1.

42

TeamSpeak 3 Client
SDK Developer Manual

This event is called when a voice packet from a client (not own client) is decoded and 3D positioned and about to be played
over your sound device, but beforeit is mixed with other sounds.

Y ou can use this function to alter/get the voice data after 3D positioning.

voi d onEdi t Post ProcessVoi ceDat aEvent (server Connecti onHandl erI D, clientlD, sanples,
sanpl eCount, channel s, channel Speaker sArray, channel Fill Mask);

ui nt 64 server Connecti onHandl er | D;
anyl D clientlD

short* sanpl es;

i nt sanpl eCount ;

i nt channel s;

const unsigned int* channel SpeakersArray;
unsi gned int* channel Fi |l | Mask;

Parameters
» server ConnectionHandl er| D
ID of the server connection handler from which the voice data was sent.
e clientlD
ID of the client whose voice data s received.
e sanpl es
Pointer to the voice data (signed 16 bit @ 48KHz).
» sanpl eCount
Number of samples the "samples' variable points to.
* channel s
Number of channelsin the sound data.
» channel Speaker sArray

An array with channel s entries, defining the speaker each channels represents. The speaker values can be found in the
SPEAKER_* defineswithinpubl i c_definitions. h.

For example for stereo (channel s = 2), the array might look liks this:

channel Speaker Arr ay[0]
channel Speaker Array[1]

SPEAKER_FRONT_LEFT
SPEAKER_FRONT_RI GHT

* channel Fi | | Mask
A pointer to abit-mask defining which channels arefilled. For efficiency reasons, not all channels need to have actual sound

datain it. So before this data is used, use this bit-mask to check if the channel is actualy filled. If you decide to add data
to achannel that is empty, set the bit for this channel in this mask.

43

TeamSpeak 3 Client
SDK Developer Manual

For example, this callback reports:

channels=6

channel Speakers[0] = SPEAKER_FRONT_CENTER

channel Speakerg[1] = SPEAKER_LOW_FREQUENCY

channel Speakerg[2] = SPEAKER_BACK_LEFT

channel Speakerg[3] = SPEAKER_BACK_RIGHT

channel Speakerg[4] = SPEAKER_SIDE_LEFT

channel Speakerg[5] = SPEAKER_SIDE_RIGHT // Quite unusual setup
*channelFillMask = 1

This means "samples' pointsto 6 channel data, but only the SPEAKER_FRONT_CENTER channel has data, the other chan-
nels are undefined (not necessarily 0, but undefined).

So for thefirst sample, sampleg[0] has dataand samples[1], samples[2], sampleg] 3], sampleg[4] and samples] 5] are undefined.

If you want to add SPEAKER_BACK_RIGHT channel data you would do something like:

*channel Fil | Mask | = 1<<3; // SPEAKER BACK RICHT is the 4th channel (is index 3) according to *channel Speakers.
for(int i=0; i<sanpleCount; ++i){

sanpl es[3 + (i*channels)] = get Channel SoundDat a(SPEAKER_BACK_RI GHT, i);
}

This event is called when all sounds that are about to be played back for this server connection are mixed. This is the last
chance to alter/get sound.

Y ou can use this function to alter/get the sound data before playback.

voi d onEdi t M xedPl aybackVoi ceDat aEvent (server Connecti onHandl erI D, sanples, sanple-
Count, channel s, channel SpeakersArray, channel Fill Mask);

ui nt 64 server Connecti onHandl er | D;
short* sanpl es;

i nt sanpl eCount ;

i nt channel s;

const unsigned int* channel SpeakersArray;
unsi gned int* channel Fi | | Mask;

Parameters
» server ConnectionHandl er| D
ID of the server connection handler from which the voice data was sent.
e sanpl es
Pointer to the voice data (signed 16 bit @ 48KHz).
» sanpl eCount

Number of samplesthe "samples' variable points to.

TeamSpeak 3 Client
SDK Developer Manual

* channel s
Number of channelsin the sound data.
e channel Speaker sArray

An array with channel s entries, defining the speaker each channels represents. The speaker values can be found in the
SPEAKER_* defineswithin publ i c_defini tions. h.

For example for stereo (channel s = 2), the array might look liks this:

SPEAKER_FRONT_LEFT
SPEAKER_FRONT_RI GHT

channel Speaker Array[0]
channel Speaker Array|[1]

* channel Fi I | Mask
A pointer to abit-mask of which channelsarefilled. For efficiency reasons, not al channels need to have actual sound data

init. So before this data is used, use this bit-mask to check if the channel is actually filled. If you decide to add datato a
channel that is empty, set the bit for this channel in this mask.

This event is called after sound is recorded from the sound device and is preprocessed. This event can be used to get/alter
recorded sound. Also it can be determined if this sound will be send, or muted. Thisis used by the TeamSpeak client to record
sessions.

If the sound data will be send, (*edited | 2) is true. If the sound data is changed, set bit 1 (*edited |=1). If the sound should
not be send, clear bit 2. (*edited &= ~2)

voi d onEdi t Capt ur edVoi ceDat aEvent (server Connecti onHandl er|1 D, sanpl es, sanpl eCount,
channel s, edited);

ui nt 64 server Connecti onHandl er | D
short* sanpl es;
i nt sanpl eCount;

i nt channel s;
int* edited;

Parameters
» server Connecti onHandl er|I D
ID of the server connection handler from which the voice data was sent.
* sanpl es
Pointer to the voice data (signed 16 bit @ 48KHz).
e sanpl eCount
Number of samplesthe "samples' variable points to.

e channel s

45

TeamSpeak 3 Client
SDK Developer Manual

Number of channelsin the sound data.
* edited
When called, bit 2 indicates if the sound is about to be sent to the server.

On return, set bit 1 if the sound data was changed.

Voice recording

When using the above callbacksto record voice, you should notify the server when recording starts or stopswith the following
functions:

unsi gned int ts3client_startVoi ceRecordi ng(server Connecti onHandl erl D);

ui nt 64 server Connecti onHandl er | D

unsi gned int ts3client_stopVoi ceRecordi ng(server Connecti onHandl erl D) ;

ui nt 64 server Connecti onHandl er | D;

Parameters
» server Connecti onHandl er| D
ID of the server connection handler on which voice recording should be started or stopped.

Returns ERROR _ok on success, otherwise an error code asdefinedinpubl i ¢_errors. h.

Playing wave files

The TeamSpeak Client Lib offers support to play wave files from the local harddisk.
To play aloca wavefile, call
unsi gned int ts3client_playWaveFi | e(server Connecti onHandl erl D, path);

anyl D server Connecti onHandl er| D
const char* path;

Parameters
e server Connecti onHandl er| D

ID of the server connection handler defining which playback deviceisto be used to play the sound file.

46

TeamSpeak 3 Client
SDK Developer Manual

e path
Locad filepath of the sound filein WAV format to be played, encoded in UTF-8.
Returns ERROR _ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

Thisisthe simple version of playing a sound file. It's a fire-and-forget mechanism, this function will not block.

The more complex version is to play an optionally looping sound and obtain a handle, which can be used to pause, unpause
and stop the loop.

unsigned int ts3client_playWaveFil eHandl e(server Connecti onHandl er1 D, path, | oop,
waveHandl e) ;

anyl D server Connecti onHandl er| D,
const char* path;

int |oop;
ui nt 64* waveHandl e;

Parameters
» server ConnectionHandl er| D
ID of the server connection handler defining which playback deviceisto be used to play the sound file.
e path
Local filepath of the sound filein WAV format to be played, encoded in UTF-8.
* loop
If set to 1, the sound will be looping until the handle is paused or closed.
* waveHand! e

Memory address of a variable in which the handle is written. Use this handle to cal
ts3client pauseWaveFi | eHandl e andt s3client cl oseWaveFi | eHandl e.

Returns ERROR_ok on success, otherwise an error code asdefinedinpubl i ¢c_errors. h. If an error occured, waveHan-
dl e isuninitialized and must not be used.

Using the handle obtained by t s3cl i ent _pl ayWaveFi | eHandl e, sounds can be paused and unpaused with

unsigned int ts3client_pauseWaveFi | eHandl e(server Connecti onHandl er1 D, waveHandl e,
pause) ;

anyl D server Connecti onHandl er| D,
ui nt 64 waveHandl e;

47

TeamSpeak 3 Client
SDK Developer Manual

i nt pause;

Parameters
» server Connecti onHandl erl D
ID of the server connection handler defining which playback deviceisto be used to play the sound file.
* waveHandl! e
Wave handle obtained by t s3cl i ent _pl ayWaveFi | eHandl e.
* pause
If set to 1, the sound will be paused. Set to 0 to unpauise.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

Using the handle obtained by t s3cl i ent _pl ayWaveFi | eHandl e, sounds can be closed with
unsi gned int ts3client_cl oseWaveFi | eHandl e(server Connecti onHandl erl D, waveHandl e) ;

anyl D server Connecti onHandl er| D
ui nt 64 waveHandl e;

Parameters
» server Connecti onHandl erl D

ID of the server connection handler defining which playback deviceisto be used to play the sound file.
+ waveHandl! e

Wave handle obtained by t s3cl i ent _pl ayWaveFi | eHandl e.

Returns ERROR _ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

3D Sound

TeamSpeak 3 supports 3D sound to assign each speaker a unique position in 3D space. Provided are functions to modify the
3D position, velocity and orientation of own and foreign clients.

Generally the struct TS3_VECTOR describes a vector in 3D space:

typedef struct {

48

TeamSpeak 3 Client
SDK Developer Manual

float x; /* X coordinate in 3D space. */
float vy; /* Y coordinate in 3D space. */
float z; /* Z coordinate in 3D space. */

} TS3_VECTOR
To set the position, velocity and orientation of the own client in 3D space, call:

unsi gned int ts3client_systenset3DListenerAttributes(serverConnectionHandl erl D, po-
sition, forward, up);

ui nt 64 server Connecti onHandl er | D;
const TS3_VECTOR* position;

const TS3 VECTOR* forward;
const TS3_VECTOR* up;

Parameters
» server ConnectionHandl er| D
ID of the server connection handler on which the 3D sound listener attributes are to be set.
e position
3D position of the own client.
If passing NULL, the parameter is ignored and the value not updated.
o forward
Forward orientation of the listener. The vector must be of unit length and perpendicular to the up vector.
If passing NULL, the parameter is ignored and the value not updated.
. up
Upward orientation of the listener. The vector must be of unit length and perpendicular to the forward vector.
If passing NULL, the parameter isignored and the value not updated.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

To adjust 3D sound system settings use:

unsigned int ts3client_systenset3DSettings(serverConnectionHandl erl D, distanceFac-
tor, rolloffScale);

ui nt 64 server Connecti onHandl er | D;
fl oat di stanceFactor;
float roll of f Scal e;

49

TeamSpeak 3 Client
SDK Developer Manual

Parameters
» server ConnectionHandl er| D
ID of the server connection handler on which the 3D sound system settings are to be adjusted.
+ di st anceFact or
Relative distance factor. Default is 1.0 = 1 meter
* rol |l of f Scal e
Scaling factor for 3D sound rolloff.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

To adjust a clients position and velocity in 3D space, call:

unsi gned int ts3client_channel set 3DAttri butes(serverConnecti onHandl erl D,

position);
ui nt 64 server Connecti onHandl er | D;

anyl D clientlD;
const TS3_VECTOR* position;

Parameters
» server ConnectionHandl er| D
ID of the server connection handler on which the 3D sound channel attributes are to be adjusted.
e clientlD
ID of the client to adjust.
e position
Vector specifying the position of the given client in 3D space.

Returns ERROR _ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

Thisevent is called to calculate volume attenuation for distance in 3D positioning of clients.

void onCustonBdRol | of f Cal cul ati onCl i ent Event (server Connecti onHandl er | D,
di stance, volune);

ui nt 64 server Connecti onHandl er | D;
anyl D clientlD

clientl D,

clientl D,

50

TeamSpeak 3 Client
SDK Developer Manual

fl oat distance;
float* vol une;

Parameters
» server ConnectionHandl erl D
ID of the server connection handler on which the volume attenuation cal culation occured.
e clientlD
ID of the client which is being 3D positioned.
» di stance
The distance between the listener and the client.
e vol ume

The volume which the Client Lib calculated. This can be changed in this callback.

This event is called to calculate volume attenuation for distance in 3D positioning of awave file that was opened previously
witht s3cl i ent _pl ayWaveFi | eHandl e.

voi d onCustonBdRol | of f Cal cul ati onWaveEvent (server Connecti onHandl erI D, waveHandl e,
di stance, volune);

ui nt 64 server Connecti onHandl er | D;
ui nt 64 waveHandl e;

float distance;
float* vol une;

Parameters
» server Connecti onHandl erl D

ID of the server connection handler on which the volume attenuation cal culation occured.
* waveHandl e

Handle for the playing wavefile, returned by t s3cl i ent _pl ayWaveFi | eHandl e.
« di stance

The distance between the listener and the client.
* vol une

The volume which the Client Lib calculated. This can be changed in this callback.

51

TeamSpeak 3 Client
SDK Developer Manual

This method is used to 3D position awave file that was opened previously witht s3cl i ent _pl ayWaveFi | eHandl e.

unsigned int ts3client_set3DWaveAttri butes(serverConnectionHandl erl D, waveHandl e,
posi tion);

ui nt 64 server Connecti onHandl er | D;

ui nt 64 waveHandl e;
const TS3_VECTOR* position;

Parameters
e server Connecti onHandl er|I D

ID of the server connection handler on which the volume attenuation cal culation occured.
* waveHand| e

Handle for the playing wavefile, returned by t s3cl i ent _pl ayWaveFi | eHandl e.
e position

The 3D position of the sound.
* vol une

The volume which the Client Lib calculated. This can be changed in this callback.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

Query available servers, channels and clients

A client can connect to multiple servers. To list all currently existing server connection handlers, call:
unsi gned int ts3client_getServerConnectionHandl erList(result);

ui nt 64** resul t;

Parameters
e result

Address of avariablethat receivesaNULL-termianted array of all currently existing server connection handler IDs. Unless
an error occurs, the array must bereleased usingt s3cl i ent _freeMenory.

Returns ERROR _ok on success, otherwise an error code as defined in publ i c_errors. h. If an error has occured, the
result array is uninitialized and must not be released.

52

TeamSpeak 3 Client
SDK Developer Manual

A list of all channels on the specified virtual server can be queried with:
unsi gned int ts3client_getChannel Li st (serverConnectionHandl erl D, result);

ui nt 64 server Connecti onHandl er | D
ui nt 64** resul t;

Parameters
» server ConnectionHandl er| D

ID of the server connection handler for which the list of channelsis requested.
* result

Address of a variable that receives a NULL-termianted array of channel IDs. Unless an error occurs, the array must be
released usingt s3cl i ent _freeMenory.

Returns ERROR _ok on success, otherwise an error code as defined in publ i ¢c_errors. h. If an error has occured, the
result array is uninitialized and must not be released.

To get alist of al currently visible clients on the specified virtual server:
unsi gned intts3client_getdientList(serverConnectionHandl erlD, result);

ui nt 64 server Connecti onHandl er | D;
anyl D** result;

Parameters
* server Connecti onHandl erl D

ID of the server connection handler for which the list of clientsis requested.
* result

Address of avariablethat receivesaNUL L -termianted array of client IDs. Unlessan error occurs, the array must be released
usingt s3cli ent _freeMenory.

Returns ERROR _ok on success, otherwise an error code as defined in publ i c_errors. h. If an error has occured, the
result array is uninitialized and must not be released.

To get alist of al clientsin the specified channel if the channel is currently subscribed:

53

TeamSpeak 3 Client
SDK Developer Manual

unsigned int ts3client_getChannel dientlList(serverConnectionHandl erl D, channel | D,
result);

ui nt 64 server Connecti onHandl er | D

ui nt 64 channel | D;
anyl D** result;

Parameters
* server Connecti onHandl erl D
ID of the server connection handler for which the list of clients within the given channel is requested.
e channel I D
ID of the channel whose client list is requested.
* result

Address of avariablethat receivesaNUL L -termianted array of client IDs. Unlessan error occurs, the array must be released
usingt s3cli ent _freeMenory.

Returns ERROR _ok on success, otherwise an error code as defined in publ i ¢c_errors. h. If an error has occured, the
result array is uninitialized and must not be released.

To query the channel 1D the specified client has currently joined:

unsigned int ts3client_getChannel O Cient(serverConnectionHandl erI D, clientlD, re-
sult);

ui nt 64 server Connecti onHandl er | D;

anyl D clientlD;
ui nt 64* result;

Parameters
» server Connecti onHandl erl D
ID of the server connection handler for which the channel 1D is requested.
e clientlD
ID of the client whose channel ID is requested.
* result

Address of avariable that receives the ID of the channel the specified client has currently joined.

54

TeamSpeak 3 Client
SDK Developer Manual

Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

To get the parent channel of agiven channel:

unsigned int ts3client_getParent Channel O Channel (server Connecti onHandl erl D, chan-
nel 1D, result);

ui nt 64 server Connecti onHandl er | D
ui nt 64 channel | D
ui nt 64* result;

Parameters
» server Connecti onHandl erl D
ID of the server connection handler for which the parent channel of the specified channel is requested.
* channel I D
ID of the channel whose parent channel ID is requested.
* result
Address of avariable that receives the ID of the parent channel of the specified channel.
If the specified channel has no parent channel, r esul t will be set to the reserved channel 1D 0.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

Example codeto print alist of all channels on avirtual server:
ui nt 64* channel s;

i f(ts3client_getChannel Li st(serverlD, &channels) == ERROR ok) {
for(int i=0; channels[i] != NULL; i++) {
printf("Channel ID: %\n", channels[i]);
}

ts3client_freeMenory(channel s);

}
To print al visible clients:
anyl D* clients;

if(ts3client_getdientList(scHandl erl D, &clients) == ERROR ok) {
for(int i=0; clients[i] != NULL; i++) {
printf("Cient ID %\n", clients[i]);
}

ts3client_freeMenory(clients);

}

Exampleto print al clients who are member of channel with ID 123:

55

TeamSpeak 3 Client
SDK Developer Manual

ui nt 64 channel ID = 123; /* Channel IDin this exanple */
anyl D *clients;

if(ts3client_getChannel dientlList(scHandl erl D, channel I D) == ERROR ok) {
for(int i=0; clients[i] != NULL; i++) {
printf("Cient ID %\n", clients[i]);
}

ts3client_freeMenory(clients);

}

Retrieve and store information

The Client Lib remembersalot of information which have been passed through previoudly. The datais available to be queried
by a client for convinience, so the interface code doesn't need to store the same information as well. The client can in many
cases also modify the stored information for further processing by the server.

All strings passed to and from the Client Lib need to be encoded in UTF-8 format.
Client information

Information related to own client

Once connection to a TeamSpeak 3 server has been established, a unique client ID is assigned by the server. This ID can
be queried with

unsigned int ts3client_getCdientlD(serverConnectionHandlerID, result);

ui nt 64 server Connecti onHandl er | D
anyl D* result;

Parameters
* server Connecti onHandl erl D

ID of the server connection handler on which we are querying the own client ID.
* result

Address of avariable that receivesthe client ID. Client IDs start with the value 1.

Returns ERROR _ok on success, otherwise an error code asdefinedinpubl i ¢_errors. h.

Various information related about the own client can be checked with:

unsigned int ts3client_getdientSelfVariabl eAslnt(serverConnecti onHandl erl D, fl ag,
result);

ui nt 64 server Connecti onHandl er | D

56

TeamSpeak 3 Client
SDK Developer Manual

ClientProperties flag;

int* result;

unsi gned i nt
flag, result);

ts3client_getdientSel fVariabl eAsString(serverConnecti onHandl erl D,

ui nt 64 server Connecti onHandl er | D;

ClientProperties flag;

char** result;

Parameters

e server Connecti onHandl er| D

ID of the server connection handler on which the information for the own client is requested.

« flag

Client propery to query, see below.

e result

Address of a variable which receives the result value as int or string, depending on which function is used. In case of a
string, memory must be released usingt s3cl i ent _f r eeMenory, unless an error occured.

Returns ERROR _ok on success, otherwise an error code as defined in publ i c_error s. h. For the string version: If an
error has occured, the result string is uninitialized and must not be released.

The parameter f | ag specifies the type of queried information. It is defined by the enum ClientProperties:

enum Cl i ent Properties {

CLI ENT_UNI QUE_I DENTI FI ER = 0,

CLI ENT_NI CKNAME,
CLI ENT_VERSI ON,

CLI ENT_PLATFORM

CLI ENT_FLAG TALKI NG,

CLI ENT_| NPUT_MJTED,

CLI ENT_OUTPUT_MUTED,

CLI ENT_OUTPUTONLY_MUTED
CLI ENT_| NPUT_HARDWARE,

CLI ENT_OUTPUT_HARDWARE,

CLI ENT_I NPUT_DEACTI VATED,

CLI ENT_I DLE_TI ME,
CLI ENT_DEFAULT_CHANNEL,

/lautonmatically up-to-date for any client "in view', can be used
//to identify this particular client installation

/lautomatically up-to-date for any client "in view

//for other clients than ourself, this needs to be requested

/1 (=> requestdientVari abl es)

//for other clients than ourself, this needs to be requested

/1 (=> requestdientVari abl es)

/lautonmatically up-to-date for any client that can be heard

/1 (in room/ whisper)

/lautomatically up-to-date for any client "in view', this clients
/1 m crophone nute status

/lautomatically up-to-date for any client "in view', this clients
/I headphones/ speakers nute status

/lautomatically up-to-date for any client "in view', this clients
/ I headphones/ speakers only nute status

/lautomatically up-to-date for any client "in view', this clients
/1 m crophone hardware status (is the capture device opened?)
//automatically up-to-date for any client "in view', this clients
/ I headphone/ speakers hardware status (is the playback device opened?)
/lonly usable for ourself, not propagated to the network
/linternal use

/lonly usable for ourself, the default channel we used to connect

57

TeamSpeak 3 Client
SDK Developer Manual

//on our |ast connection attenpt
CLI ENT_DEFAULT_CHANNEL_PASSWORD, / /i nt er nal use

CLI ENT_SERVER_PASSWORD, //internal use

CLI ENT_META_DATA, //automatically up-to-date for any client "in view', not used by
/| Teantpeak, free storage for sdk users

CLI ENT_I S_MJTED, //only make sense on the client side locally, "1" if this client is
//currently nuted by us, "0" if he is not

CLI ENT_I S_RECORDI NG, //automatically up-to-date for any client "in view

CLI ENT_VCOLUME_MODI FI CATOR, //internal use

CLI ENT_ENDVARKER,

CLI ENT_UNI QUE_| DENTI FI ER

String: Unique | D for thisclient. Staysthe same after restarting the application, so you can usethistoidentify individual user.
CLI ENT_NI CKNAME

Nickname used by the client. Thisvalue is always automatically updated for visible clients.

CLI ENT_VERSI ON

Application version used by this client. Needs to be requested witht s3cl i ent _request C i ent Vari abl es unless
called on own client.

CLI ENT_PLATFORM

Operating system used by this client. Needs to be requested with t s3cl i ent _request O i ent Vari abl es unless
called on own client.

CLI ENT_FLAG TALKI NG

Set when the client is currently sending voice datato the server. Always available for visible clients.

Note: Y ou should query thisflag for theown client usingt s3cl i ent _get Cl i ent Sel f Vari abl eAsl nt .
CLI ENT_I NPUT_MJTED

Indicates the mute status of the clients capture device. Possible values are defined by the enum Mutel nputStatus. Always
availablefor visible clients.

CLI ENT_OUTPUT_MJTED

Indicates the combined mute status of the clients playback and capture devices. Possible values are defined by the enum
MuteOutputStatus. Always available for visible clients.

CLI ENT_OUTPUTONLY_MJTED

Indicates the mute status of the clients playback device. Possible values are defined by the enum MuteOutputStatus. Always
availablefor visible clients.

CLI ENT_I NPUT_HARDWARE

Set if the clients capture device is not available. Possible values are defined by the enum Hardwarel nputStatus. Always
availablefor visible clients.

CLI ENT_OUTPUT_HARDWARE

58

TeamSpeak 3 Client
SDK Developer Manual

Set if the clients playback deviceis not available. Possible values are defined by the enum HardwareOutputStatus. Always
availablefor visible clients.

CLI ENT_I NPUT_DEACTI VATED

Set when the capture device has been deactivated as used in Push-To-Talk. Possible values are defined by the enum Input-
DeactivationStatus. Only used for the own clientsand not availablefor other clientsasit doesn't get propagated to the server.

CLI ENT_I DLE_TI ME
Time the client has been idle. Needs to be requested witht s3cl i ent _request C i ent Vari abl es.
CLI ENT_DEFAULT_CHANNEL

CLI ENT_DEFAULT_CHANNEL _PASSWORD

Default channel name and password used in the last t s3cl i ent _st art Connecti on call. Only available for own
client.

CLI ENT_META_DATA

Not used by TeamSpeak 3, offers free storage for SDK users. Always available for visible clients.

CLI ENT_I S_MJTED

Indicates a client has been locally muted witht s3cl i ent _request Mut ed i ent s. Client-side only.
CLI ENT_| S_RECORDI NG

Indicates aclient is currently recording all voice datain his channel.

CLI ENT_VOLUME_MODI FI CATCR

The client volume modifier set by t s3cl i ent _set d i ent Vol uneModi fi er.

Generally al types of information can be retrieved as both string or integer. However, in most cases the expected datatypeis
obvious, like querying CL1 ENT_NI CKNAME will clearly require to store the result as string.

Example 1: Query client nickname

char* ni cknane;

if(ts3client_getdientSelfVariabl eAsString(scHandl erl D, CLI ENT_NI CKNAME, &nicknane) == ERROR ok) {

}

printf("My nicknane is: %\n", s);
ts3client_freeMenory(s);

Example 2: Check if own client is currently talking (to be exact: sending voice data)

int talking;

if(ts3client_getdientSelfVariabl eAslnt(scHandl erl D, CLI ENT_FLAG TALKI NG, &tal king) == ERROR ok) {

switch(tal king) {
case STATUS_TALKI NG
/1 1 amcurrently talking
br eak;
case STATUS_NOT_TALKI NG

59

TeamSpeak 3 Client
SDK Developer Manual

/1 1 amcurrently not talking
br eak;
case STATUS_TALKI NG WHI LE_DI SABLED:
/1 1 amtal king while mcrophone is disabled
br eak;
defaul t:
printf("Invalid value for CLIENT_FLAG TALKING n");

Information related to the own client can be modified with

unsigned int ts3client_setdientSelfVariabl eAslnt(serverConnectionHandl erl D, fl ag,
val ue);

ui nt 64 server Connecti onHandl er | D;
CientProperties flag;
i nt val ue;

unsi gned i nt ts3client_setdientSel fVariabl eAsString(server Connecti onHandl erl D,
flag, value);

ui nt 64 server Connecti onHandl er | D

CientProperties flag;
const char* val ue;

Parameters
» server Connecti onHandl er| D
ID of the server connection handler on which the information for the own client is changed.
« flag
Client propery to query, see above.
* val ue
Vauethe client property should be changed to.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

2 | mportant

After modifying one or more client variables, you must flush the changes. Flushing ensures the changes are sent
to the TeamSpeak 3 server.

unsigned int ts3client flushdientSelfUpdates(serverConnectionHandl erl D,
r et ur nCode) ;

60

TeamSpeak 3 Client
SDK Developer Manual

ui nt 64 server Connecti onHandl er | D;
const char* returnCode;

For example, to change the own nickname:

/* Modify data */

if(ts3client_setCientSelfVariableAsString(scHandl erl D, CLI ENT_NI CKNAME, "Joe") != ERROR ok) {
printf("Error setting client variable\n");
return;

}

/* Flush changes */
if(ts3client_flushCdientSelfUpdates(scHandl erl D, NULL) != ERROR ok) {
printf("Error flushing client updates");

Example for doing two changes:

/* Modify data 1 */

if(ts3client_setCientSelfVariableAslnt(scHandl erl D, CLI ENT_AWAY, AWAY_ZZ7) != ERROR ok) {
printf("Error setting away node\n");
return;

}

/* Modify data 2 */

if(ts3client_setCientSelfVariableAsString(scHandl erl D, CLI ENT_AWAY_MESSAGE, "Lunch") != ERROR ok) {
printf("Error setting away nmessage\n");
return;

}

/* Flush changes */

if(ts3client_flushCdientSelfUpdates(scHandl erl D, NULL) != ERROR ok) {
printf("Error flushing client updates");

}

Example to mute and unmute the microphone:

unsigned int error;
bool shoul dTal k;

shoul dTal k = i sPushToTal kButtonPressed(); // Your key detection inplenentation
if((error = ts3client_setCientSelfVariabl eAslnt(scHandl erl D, CLI ENT_I NPUT_DEACTI VATED,
shoul dTal k ? | NPUT_ACTI VE : | NPUT_DEACTI VATED)) != ERROR ok) {
char* errorMsg;
if(ts3client_getErrorMessage(error, &errorMg) != ERROR ok) {
printf("Error toggling push-to-talk: %\n", errorMsg);
ts3client_freeMenory(errorMsg);
}

return;

}

if(ts3client_flushCdientSelfUpdates(scHandl erl D, NULL) != ERROR ok) {
char* errorMsg;
if(ts3client_getErrorMessage(error, &errorMg) != ERROR ok) {
printf("Error flushing after toggling push-to-talk: %\n", errorMsgQ);
ts3client_freeMenory(errorMsg);

}
}

See the FAQ section for further details on implementing Push-To-Tak with
ts3client _setdientSel fVariabl eAsl nt.

61

TeamSpeak 3 Client
SDK Developer Manual

Information related to other clients

Information related to other clients can be retrieved in a similar way. Unlike own clients however, information cannot be
modified.

To query client related information, use one of the following functions. The parameter f | ag is defined by the enum Client-
Properties as shown above.

unsigned int ts3client_getdientVariabl eAslnt(serverConnectionHandl erl D, clientlD,
flag, result);

ui nt 64 server Connecti onHandl er | D
anyl D clientlD;

ClientProperties flag;

int* result;

unsigned int ts3client_getdientVariabl eAsU nt 64(serverConnecti onHandlerlI D, clien-
tID, flag, result);

ui nt 64 server Connecti onHandl er | D;
anyl D clientlD;

CientProperties flag;

ui nt 64* result;

unsigned int ts3client _getdientVariableAsString(serverConnectionHandl erl D, clien-
tID flag, result);

ui nt 64 server Connecti onHandl er | D;
anyl D clientlD;

CientProperties flag;
char** result;

Parameters
e server Connecti onHandl er|I D
ID of the server connection handler on which the information for the specified client is requested.
e clientlD
ID of the client whose property is queried.
« flag
Client propery to query, see above.

e result

62

TeamSpeak 3 Client
SDK Developer Manual

Address of avariable which receives the result value as int, uint64 or string, depending on which function is used. In case
of astring, memory must be released usingt s3cl i ent _f r eeMenor y, unless an error occured.

Returns ERROR _ok on success, otherwise an error code as defined in publ i c_errors. h. For the string version: If an
error has occured, the result string is uninitialized and must not be released.

As the Client Lib cannot have all information for all users available al the time, the latest data for a given client can be
reguested from the server with:

unsigned int ts3client_requestdientVariabl es(serverConnectionHandl erl D, clientlD,
r et ur nCode) ;

ui nt 64 server Connecti onHandl er | D;

anyl D clientlD;
const char* returnCode;

The function requires one second delay before calling it again on the same client ID to avoid flooding the server.

Parameters
» server ConnectionHandl er| D
ID of the server connection handler on which the client variables are requested.
e clientlD
ID of the client whose variables are requested.
* returnCode
See return code documentation. Pass NULL if you do not need this feature.

Returns ERROR_ok on success, otherwise an error code asdefinedinpubl i ¢_errors. h.

After requesting the information, the following event is called:
voi d onUpdat eC i ent Event (server Connecti onHandl erI D, clientlD);

ui nt 64 server Connecti onHandl er | D;
anyl D clientlD;

Parameters

* server Connecti onHandl er| D

63

TeamSpeak 3 Client
SDK Developer Manual

ID of the server connection handler on which the client variables are now available.
e clientID
ID of the client whose variables are now available.

The event does not carry the information per se, but now the Client Lib guarantees to have the clients in-
formation available, which can be subsequently queried with ts3client _getd i entVariabl eAsl nt and
ts3client_getdientVariabl eAsString.

Whisper lists

A client with a whisper list set can talk to the specified clients and channels bypassing the normal rule that voice is only
transmitted to the current channel. Whisper lists can be defined for individual clients. A whisper list consists of an array of
client IDs and/or an array of channel IDs.

unsigned int ts3client_requestdientSetWisperlList(serverConnectionHandlerlD, cli-
ent| D, targetChannel | DArray, targetdientlDArray, returnCode);

ui nt 64 server Connecti onHandl er | D;
anyl D clientlD;

const ui nt64* targetChannel | DArray;
const anylD* targetdientl| DArray;
const char* returnCode;

Parameters
» server Connecti onHandl er| D
ID of the server connection handler on which the clients whisper list is modified.
e clientlD
ID of the client whose whisper list is modified. If set to O, the own client is modified (same as setting to own client ID).
e target Channel | DArr ay
Array of channel IDs, terminated with 0. These channels will be added to the whisper list.
To clear thelist, pass NULL or an empty array.
e targetdient| DArray
Array of client IDs, terminated with 0. These clients will be added to the whisper list.
To clear thelist, pass NULL or an empty array.
* returnCode
See return code documentation. Pass NULL if you do not need this feature.

Returns ERROR _ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

TeamSpeak 3 Client
SDK Developer Manual

To disable the whisperlist for the given client, pass NULL to both t ar get Channel | DArray andtargetClientl -

DAr r ay. Careful: If you pass two empty arrays, whispering is not disabled but instead one would still be whispering to no-
body (empty lists).

To control which client isallowed to whisper to own client, the Client Lib implementsan internal whisper whitelist mechanism.
When a client recieves a whisper while the whispering client has not yet been added to the whisper alow list, the receiving
client gets the following event. Note that whisper voice datais not received until the sending client is added to the receivers
whisper allow list.

voi d onl gnor edWhi sper Event (server Connecti onHandl erI D, clientlD);

ui nt 64 server Connecti onHandl er | D;
anyl D clientlD;

Parameters
* server Connecti onHandl erl D
ID of the server connection handler on which the event occured.
e clientlD
ID of the whispering client.
The receiving client can decide to allow whispering from the sender and add the sending client to the whisper alow list by
calingt s3client _al | owmhi sper skFrom If the sender is not added by the receiving client, this event persists being
called but no voice datais transmitted to the receiving client.
To add a client to the whisper alow list:

unsi gned int ts3client_all owhi spersFron(server Connecti onHandl erI D, cl1D);

ui nt 64 server Connecti onHandl er | D;
anyl D cl I Db

Parameters
» server Connecti onHandl er| D
ID of the server connection handler on which the client should be added to the whisper allow list.
e clID
ID of the client to be added to the whisper alow list.
To remove aclient from the whisper allow list:

unsi gned i nt ts3client_renoveFromAl | owedWi sper sFron(server Connect i onHandl er| D,
cl1D;

ui nt 64 server Connecti onHandl er | D;

65

TeamSpeak 3 Client
SDK Developer Manual

anyl D cl I D;

Parameters
» server Connecti onHandl er| D

ID of the server connection handler on which the client should be removed from the whisper allow list.
e clID

ID of the client to be removed from the whisper alow list.

It won't have bad sideeffectsif the same client ID is added to the whisper allow list multiple times.

Channel information

Querying and modifying information related to channels is similar to dealing with clients. The functions to query channel
information are;

unsi gned i nt ts3client_get Channel Vari abl eAsl nt (server Connecti onHandl er1 D, channel | D,
flag, result);

ui nt 64 server Connecti onHandl er | D;
ui nt 64 channel | D

Channel Properties flag;

int* result;

unsi gned int ts3client_get Channel Vari abl eAsUl nt 64(server Connecti onHandl er1 D, chan-
nelI D, flag, result);

ui nt 64 server Connecti onHandl er | D
ui nt 64 channel | D

Channel Properties flag;

ui nt 64* result;

unsi gned int ts3client _getChannel Vari abl eAsStri ng(server Connecti onHandl erl D, chan-
nel 1D, flag, result);

ui nt 64 server Connecti onHandl er | D;
ui nt 64 channel | D,

Channel Properties flag;

char* result;

Parameters

* server Connecti onHandl er| D

66

TeamSpeak 3 Client
SDK Developer Manual

ID of the server connection handler on which the information for the specified channel is requested.
* channel I D

ID of the channel whose property is queried.
- flag

Channel propery to query, see below.
* result

Address of avariable which receives the result value of typeint, uinté4 or string, depending on which function is used. In
case of astring, memory must bereleased usingt s3cl i ent _f reeMenory, unless an error occured.

Returns ERROR_ok on success, otherwise an error code as defined in publ i c_errors. h. For the string version: If an
error has occured, the result string is uninitialized and must not be released.

The parameter f | ag specifies the type of queried information. It is defined by the enum Channel Properties:

enum Channel Properties {

CHANNEL_NAME = O, // Avail able for all channels that are "in view', always up-to-date
CHANNEL_TOPI C, // Avail able for all channels that are "in view', always up-to-date
CHANNEL_DESCRI PTI ON, /1 Must be requested (=> request Channel Descri ption)

CHANNEL_ PASSWORD, //not available client side

CHANNEL_ CODEC, // Avail able for all channels that are "in view', always up-to-date
CHANNEL_CODEC_QUALI TY, // Avail able for all channels that are "in view', always up-to-date
CHANNEL_MAXCLI ENTS, // Avail able for all channels that are "in view', always up-to-date
CHANNEL_MAXFAM LYCLI ENTS, // Avail able for all channels that are "in view', always up-to-date
CHANNEL_ CRDER, // Avail able for all channels that are "in view', always up-to-date
CHANNEL_FLAG_PERMANENT, // Avail able for all channels that are "in view', always up-to-date
CHANNEL_FLAG _SEM _PERVANENT, //Available for all channels that are "in view', always up-to-date
CHANNEL_FLAG DEFAULT, // Avail able for all channels that are "in view', always up-to-date
CHANNEL _FLAG_PASSWORD, // Avail able for all channels that are "in view', always up-to-date
CHANNEL_CODEC _LATENCY_FACTOR, //Available for all channels that are "in view', always up-to-date
CHANNEL_CODEC | S_UNENCRYPTED, //Avail able for all channels that are "in view', always up-to-date

CHANNEL _ ENDVARKER,

« CHANNEL_ NAME

String: Name of the channel.
« CHANNEL_TOPI C

String: Single-line channel topic.
e CHANNEL_DESCRI PTI ON

String: Optional channel description. Can have multiple lines. Clients need to request updating this variable for a specified
channel using:

unsi gned int ts3client_request Channel Descri ption(server ConnectionHandl erl D, chan-
nel I D, returnCode);

ui nt 64 server Connecti onHandl er| D;
ui nt 64 channel | D,
const char* returnCode;

67

TeamSpeak 3 Client
SDK Developer Manual

CHANNEL _ PASSWORD

String: Optional password for password-protected channels.

Note
§ Clients can only set this value, but not query it.
If apassword is set or removed by modifying thisfield, CHANNEL _FLAG PASSWORD will be automatically adjusted.
CHANNEL_ CODEC
Int (0-3): Codec used for this channel:
e 0- Speex Narrowband (8 kHz)
e 1- Speex Wideband (16 kHz)
* 2 - Speex UltraWideband (32 kHz)
See Sound codecs.
CHANNEL_ CODEC_QUALI TY

Int (0-10): Quality of channel codec of this channel. Valid values range from 0 to 10, default is 7. Higher values result in
better speech quality but more bandwidth usage.

See Encoder options.

CHANNEL _MAXCLI ENTS

Int: Number of maximum clients who can join this channel.

CHANNEL _MAXFAM LYCLI ENTS

Int: Number of maximum clients who can join this channel and al subchannels.
CHANNEL _ ORDER

Int: Defines how channels are sorted in the GUI. Channel order isthe ID of the predecessor channel after which this channel
isto be sorted. If O, the channel is sorted at the top of its hirarchy.

For more information please see the chapter Channel sorting.
CHANNEL _FLAG PERMANENT / CHANNEL _FLAG SEM _PERMANENT
Concerning channel durability, there are three types of channels:

* Temporary

Temporary channels have neither the CHANNEL _ FLAG_PERMANENT nor CHANNEL _FLAG_SEM _ PERMANENT flag
set. Temporary channels are automatically deleted by the server after the last user hasleft and the channel isempty. They
will not be restored when the server restarts.

68

TeamSpeak 3 Client
SDK Developer Manual

* Semi-permanent

Semi-permanent channels are not automatically deleted when the last user left but will not be restored when the server
restarts.

e Permanent
Permanent channels will be restored when the server restarts.
« CHANNEL_FLAG DEFAULT

Int (0/1): Channel isthe default channel. There can only be one default channel per server. New userswho did not configure
achannel tojoinonloginint s3cl i ent _start Connecti on will automatically join the default channel.

e CHANNEL_FLAG_PASSWORD
Int (O/1): If set, channel is password protected. The password itself is stored in CHANNEL _PASSWORD.
e CHANNEL_CODEC LATENCY_FACTOR

(Int: 1-10): Latency of this channel. This allows to increase the packet size resulting in less bandwidth usage at the cost of
higher latency. A value of 1 (default) isthe best setting for lowest latency and best quality. If bandwidth or network quality
are restricted, increasing the latency factor can help stabilize the connection. Higher latency values are only possible for
low-quality codec and codec quality settings.

For best voice quality alow latency factor is recommended.
e CHANNEL_CODEC | S _UNENCRYPTED

Int (0/2): If 1, thischannel isnot using encrypted voice data. If O, voice datais encrypted for this channel. Note that channel
voice data encryption can be globally disabled or enabled for the virtual server. Changing this flag makes only sense if
global voice data encryption is set to be configured per channel as CODEC_ENCRYPTI ON_PER_CHANNEL (the default
behaviour).

To modify channel data use

unsi gned i nt ts3client_set Channel Vari abl eAsl nt (server Connecti onHandl er|1 D, channel | D,
flag, value);

ui nt 64 server Connecti onHandl er | D;
ui nt 64 channel | D

Channel Properties flag;

i nt val ue;

unsi gned int ts3client_setChannel Vari abl eAsUl nt 64(ser ver Connecti onHandl er|l D, chan-
nel I D, flag, value);

ui nt 64 server Connecti onHandl er | D;
ui nt 64 channel | D;

69

TeamSpeak 3 Client
SDK Developer Manual

Channel Properties flag;
ui nt 64 val ue;

unsi gned int ts3client_setChannel Vari abl eAsStri ng(server Connecti onHandl erl D, chan-
nel 1D, flag, value);

ui nt 64 server Connecti onHandl er | D;
ui nt 64 channel | D;

Channel Properties flag;
const char* val ue;

Parameters
* server Connecti onHandl erl D
ID of the server connection handler on which the information for the specified channel should be changed.
* channel I D
ID of the channel whoses property should be changed.
- flag
Channel propery to change, see above.
* val ue

Value the channel property should be changed to. Depending on which function is used, the value can be of typeint, uint64
or string.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

2 | mportant

After modifying one or more channel variables, you have to flush the changes to the server.

unsi gned i nt ts3client_flushChannel Updat es(server Connecti onHandl er| D, chan-
nel 1 D);

ui nt 64 server Connecti onHandl er | D;
ui nt 64 channel | D;

Parameters
* server Connecti onHandl er| D

ID of the server connection handler to which the channel changes should be flushed.

70

TeamSpeak 3 Client
SDK Developer Manual

e channel Parent| D
ID of the channel of which the changed properties should be flushed.
Returns ERROR_ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

As example, to change the channel hame and topic:

/* Modify data 1 */
i f(ts3client_setChannel Vari abl eAsString(scHandl erl D, channel | D, CHANNEL_NAME,
"Q her channel nane") != ERROR ok) {
printf("Error setting channel name\n");
return;

}

/* Modify data 2 */
i f(ts3client_setChannel Vari abl eAsString(scHandl erl D, channel I D, CHANNEL_TOPI C,
"Qt her channel topic") !'= ERROR ok) {
printf("Error setting channel topic\n");
return;

}

/* Flush changes */

if(ts3client_flushChannel Updates(scHandl erl D, channel I D) != ERROR ok) {
printf("Error flushing channel updates\n");
return;

After a channel was edited using ts3client _set Channel Vari abl eAsl nt or
ts3client _set Channel Vari abl eAsSt ri ng and the changes were flushed to the server, the edit is announced with
the event:

voi d onUpdat eChannel Edi t edEvent (server Connecti onHandl er I D, channel I D, i nvoker| D, in-
voker Nane, invokerUni quel dentifier);

ui nt 64 server Connecti onHandl er | D;

ui nt 64 channel | D

anyl D i nvoker| D,

const char* invoker Nane;

const char* invokerUni queldentifier;

Parameters
» server Connecti onHandl er| D
ID of the server connection handler on which the channel has been edited.
« channel I D
ID of edited channel.
* invokerl D

ID of the client who edited the channel.

71

TeamSpeak 3 Client
SDK Developer Manual

* i nvoker Nane
String with the name of the client who edited the channel.
e i nvoker Uni quel dentifier

String with the unique ID of the client who edited the channel.

To find the channel 1D from a channels path:

unsi gned i nt ts3client_get Channel | DFr onTChannel Nanes(server Connect i onHandl er I D, chan-
nel NaneArray, result);

ui nt 64 server Connecti onHandl er | D;
char** channel NaneArr ay;
ui nt 64* result;

Parameters
* server Connecti onHandl erl D
ID of the server connection handler on which the channdl ID is queried.
» channel NaneArr ay
Array defining the position of the channel: "grandparent”, "parent", "channel”, "". Thearray isterminated by an empty string.
* result
Address of avariable which receives the queried channel ID.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

Channel voice data encryption

Voice data can be encrypted or unencrypted. Encryption will increase CPU load, so should be used only when required.
Encryption can be configured per channel (the default) or globally enabled or disabled for the whole virtual server. By default
channels are sending voice data unencrypted, newly created channels would need to be set to encrypted if required.

To configure the global virtual server encryption settings, modify the virtua server property
VI RTUALSERVER CODEC _ENCRYPTI ON_MODE to one of the following values:

enum CodecEncrypti onMde {
CODEC_ENCRYPTI ON_PER CHANNEL = 0, // Default
CODEC_ENCRYPTI ON_FORCED_OFF,
CODEC_ENCRYPTI ON_FORCED_ON,

}s

V oicedataencryption per channel can be configured by setting the channel property CHANNEL _CODEC | S UNENCRYPTED
to O (encrypted) or 1 (unencrypted) if global encryption mode is CODEC_ENCRYPTI ON_PER_CHANNEL. If encryption is
forced on or off globally, the channel property will be automatically set by the server.

72

TeamSpeak 3 Client
SDK Developer Manual

Channel sorting

The order how channels should be display in the GUI is defined by the channel variable
CHANNEL _ORDER, which can be queried with t s3cl i ent _get Channel Vari abl eAsUl nt 64 or changed with
t s3cl i ent _set Channel Vari abl eAsUl nt 64.

The channel order isthe ID of the predecessor channel after which the given channel should be sorted. An order of 0 means
the channel is sorted on the top of its hirarchy.

Channel_1 (ID =1, order =0)
Channel_2 (ID = 2, order = 1)
Subchannel_1 (ID =4, order =0)
Subsubchannel_1 (ID = 6, order = 0)
Subsubchannel_2 (ID =7, order = 6)
Subchannel_2 (ID =5, order = 4)
Channel_3 (ID = 3, order = 2)

When anew channel is created, the client isresponsible to set a proper channel order. With the default value of 0 the channel
will be sorted on the top of its hirarchy right after its parent channel.

When moving achannel to anew parent, the desired channel order can bepassedtot s3cl i ent _r equest Channel Move.

To move the channel to another position within the current hirarchy - the parent channel stays the same -, adjust the
CHANNEL _ORDER variablewitht s3cl i ent _set Channel Vari abl eAsUl nt 64.

After connecting to aTeamSpeak 3 server, the client will beinformed of all channelsby theonNewChannel Event callback.
The order how channels are propagated to the client by this event is:

» First the complete channel path to the default channel, which is either the servers default channel with the flag
CHANNEL _FLAG_DEFAULT or the usersdefault channel passedtot s3cl i ent _st art Connect i on. Thisensuresthe
channel joined on login is visible as soon as possible.

In above example, assuming the default channel is “ Subsubchannel_2”, the channels would be announced in the following
order: Channel_2, Subchannel_1, Subsubchannel 2.

After the default channel path has completely arrived, the connection status (see enum ConnectStatus, annouced to the client
by the callback onConnect St at usChangeEvent) changesto STATUS CONNECTI ON_ESTABLI SHI NG

» Next all other channelsin the given order, where subchannel s are announced right after the parent channel.

To continue the example, the remaining channels would be announced in the order of: Channel_1, Subsubchannel_1, Sub-
channel_2, Channel_3 (Channdl_2, Subchannel 1, Subsubchannel_2 already were announced in the previous step).

When al channels have arrived, the connection status switchesto STATUS CONNECTI ON_ESTABLI| SHED.

Server information

Similar to querying client and channel data, server information can be checked with

unsigned int ts3client_getServerVariabl eAsl nt (serverConnecti onHandl erI D, flag, re-
sult);

ui nt 64 server Connecti onHandl er | D

73

TeamSpeak 3 Client
SDK Developer Manual

Virtual ServerProperties flag;
int* result;

unsigned int ts3client_getServerVariabl eAsU nt 64(server Connecti onHandl erl D, fl ag,
result);

ui nt 64 server Connecti onHandl er | D
Virtual ServerProperties flag;
ui nt 64* result;

unsigned int ts3client_getServerVariabl eAsString(serverConnecti onHandl erl D, flag,
result);

ui nt 64 server Connecti onHandl er | D;
Vi rtual Server Properties flag;
char** result;

Parameters
» server ConnectionHandl er| D
ID of the server connection handler on which the virtual server property is queried.
e clientlD
ID of the client whose property is queried.
- flag
Virtual server propery to query, see below.
* result

Address of avariable which receives the result value as int, uint64 or string, depending on which function is used. In case
of astring, memory must bereleased usingt s3cl i ent _f reeMenory, unless an error occured.

The returned type uint64 is defined as __int64 on Windows and uint64 t on Linux and Mac OS X. See the header
publ i c_defi nitions. h. Thisfunctioniscurrently only used for the flag VI RTUALSERVER UPTI ME.

Returns ERROR _ok on success, otherwise an error code as defined in publ i c_er ror s. h. For the string version: If an
error has occured, the result string is uninitialized and must not be released.

The parameter f | ag specifies the type of queried information. It is defined by the enum Virtual ServerProperties:

enum Vi rtual Server Properties {
VI RTUALSERVER_UNI QUE_I DENTI FI ER = 0, //avail abl e when connected, can be used to identify this particul ar
//server installation
VI RTUALSERVER_NAME, // avail abl e and al ways up-to-date when connected
VI RTUALSERVER_WVEL COVEMESSACE, // avai | abl e when connected, not updated whil e connected

74

TeamSpeak 3 Client
SDK Developer Manual

VI RTUALSERVER_PLATFORM // avai | abl e when connect ed
VI RTUALSERVER_VERSI ON, // avai | abl e when connect ed
VI RTUALSERVER_MAXCLI ENTS, //only avail abl e on request (=> request ServerVariables), stores the
[/ maxi mum nunber of clients that may currently join the server
VI RTUALSERVER_PASSWORD, //not available to clients, the server password
VI RTUALSERVER_CLI ENTS_ONLI NE, //only avail abl e on request (=> requestServerVari abl es),
VI RTUALSERVER_CHANNELS_ONLI NE, //only avail abl e on request (=> requestServerVari abl es),
VI RTUALSERVER_CREATED, // avai | abl e when connected, stores the tinme when the server was created
VI RTUALSERVER_UPTI ME, //only avail abl e on request (=> requestServerVariables), the tine

//since the server was started
VI RTUALSERVER_CODEC_ENCRYPTI ON_MCODE, //avail abl e and al ways up-to-date when connected
VI RTUALSERVER_ENDVARKER,

VI RTUALSERVER_UNI QUE_I| DENTI FI ER

Unique ID for thisvirtual server. Stays the same after restarting the server application. Always available when connected.
VI RTUALSERVER_NAME

Name of thisvirtual server. Always available when connected.

VI RTUALSERVER_VEL COVEMESSAGE

Optional welcome message sent to the client on login. This value should be queried by the client after connection has been
established, it is not updated afterwards.

VI RTUALSERVER_PLATFORM

Operating system used by this server. Always available when connected.
VI RTUALSERVER_VERSI ON

Application version of this server. Always available when connected.

VI RTUALSERVER_MAXCLI ENTS

Defines maximum number of clients which may connect to this server. Needs to be requested using
ts3client _request Server Vari abl es.

VI RTUALSERVER _PASSWORD

Optional password of this server. Not available to clients.
VI RTUALSERVER_CLI ENTS_ONLI NE

VI RTUALSERVER_CHANNELS_ ONLI NE

Number of clients and channels currently on this virtual server. Needs to be requested using
ts3client_request Server Vari abl es.

VI RTUALSERVER _CREATED
Time when this virtual server was created. Always available when connected.
VI RTUALSERVER _UPTI ME

Uptime of this virtual server. Needsto berequested usingt s3cl i ent _r equest Server Vari abl es.

75

TeamSpeak 3 Client
SDK Developer Manual

* VI RTUALSERVER_CODEC_ENCRYPTI ON_MCDE

Defines if voice data encryption is configured per channel, globally forced on or globally forced off for this
virtual server. The default behaviour is configure per channel, in this case modifying the channel property
CHANNEL _CODEC | S_UNENCRYPTED defines voice data encryption of individual channels.

Virtual server encryption mode can be set to the following parameters:

enum CodecEncrypti onhMbde {
CODEC_ENCRYPTI ON_PER_CHANNEL = 0,
CODEC_ENCRYPTI ON_FORCED_OFF,
CODEC_ENCRYPTI ON_FORCED_ON,

}s

This property is always available when connected.

Example code checking the number of clients online, obviously an integer value:
int clientsOnline;

if(ts3client_getServerVariabl eAsl nt (scHandl er1 D, VI RTUALSERVER CLI ENTS_ONLI NE, &clientsOnline) == ERROR ok)
printf("There are % clients online\n", clientsOnline);

A client can request refreshing the server information with:
unsi gned int ts3client_request ServerVari abl es(server Connecti onHandl erl D) ;

ui nt 64 server Connecti onHandl er | D;

The following event informs the client when the requested information is available:
unsi gned int onServer Updat edEvent (server Connecti onHandl er1 D) ;

ui nt 64 server Connecti onHandl er | D;

The following event notifies the client when virtual server information has been edited:

voi d onSer ver Edi t edEvent (server Connect i onHandl er | D, editerl D, edi t er Name,
edi terUni quel dentifier);

ui nt 64 server Connecti onHandl er| D
anyl D editerl D

const char* editerNane;

const char* editerUniqueldentifier;

76

TeamSpeak 3 Client
SDK Developer Manual

Parameters
* server Connecti onHandl erl D
ID of the server connection handler which virtual server information has been changed.
« editerlD
ID of the client who edited the information. If zero, the server is the editor.
+ edi ter Name
Name of the client who edited the information.
e editerUniqueldentifier

Unique ID of the client who edited the information.

Interacting with the server

I nteracting with the server means various actions, related to both channels and clients. Channels can be joined, created, edited,
deleted and subscribed. Clients can use text chat with other clients, be kicked or poked and move between channels.

All strings passed to and from the Client Lib need to be encoded in UTF-8 format.

Joining a channel

When a client logs on to a TeamSpeak 3 server, he will automatically join the channel with the “Default” flag, unless he
specified another channel int s3cl i ent _st art Connect i on. To have your own or another client switch to a certain
channel, call

unsi gned i nt ts3client _requestdient Mve(server Connecti onHandl erl D, clientlD,
newChannel | D, password, returnCode);

ui nt 64 server Connecti onHandl er | D;
anyl D clientlD;

ui nt 64 newChannel | D,

const char* password;

const char* returnCode;

Parameters
» server Connecti onHandl er|I D

ID of the server connection handler 1D on which this action is requested.
e clientlD

ID of the client to move.

* newChannel | D

77

TeamSpeak 3 Client
SDK Developer Manual

ID of the channel the client wantsto join.
e password
An optional password, required for password-protected channels.
* returnCode
See return code documentation. Pass NULL if you do not need this feature.

Returns ERROR _ok on success, otherwise an error code asdefined inpubl i ¢_errors. h.

If the move was successful, one the following events will be called:

void onC i ent MoveEvent (server Connecti onHandl er1 D, clientlD, ol dChannellD, newChan-
nel I D, visibility, noveMessage);

ui nt 64 server Connecti onHandl er | D;
anyl D clientlD;

ui nt 64 ol dChannel | D,

ui nt 64 newChannel | D,

int visibility;

const char* noveMessage;

Parameters
» server ConnectionHandl er| D

ID of the server connection handler on which the action occured.
e clientlD

ID of the moved client.
* ol dChannel I D

ID of the old channdl left by the client.
* newChannel I D

ID of the new channel joined by the client.
e visibility

Defined in the enum Visibility

enum Visibility {
ENTER_VISIBILITY = O,
RETAI N_VI SI BI LI TY,
LEAVE_VI SI BI LI TY

78

TeamSpeak 3 Client
SDK Developer Manual

« ENTER VI SIBILITY
Client moved and entered visibility. Cannot happen on own client.
* RETAIN_ VI SIBILITY
Client moved between two known places. Can happen on own or other client.
« LEAVE VI SIBILITY
Client moved out of our sight. Cannot happen on own client.
e noveMessage
Displaying the optional message givenint s3cl i ent _st opConnecti on.
Example: Requesting to move the own client into channel ID 12 (not password-protected):
ts3client_requestCientMve(scHandl erl D, ts3client_getdientlD(scHandl erl D), 12, "");

Now wait for the callback:

voi d yourl npl ement ati onOf _onC i ent MoveEvent (ui nt 64 scHandl erI D, anyl D clientlD,
ui nt 64 ol dChannel I D, ui nt 64 newChannel | D
int visibility) {

Server connection handler | D, sanme as above when requesting

Om client | D, sanme as above when requesting

ID of the channel the client has left

12, as requested above

One of ENTER VI SIBILITY, RETAIN_VISIBILITY, LEAVE VISIBILITY

/'l scHandl erl D
/Il clientlD

/1 ol dChannel I D
/!l newChannel | D
/] visibility

[S
VVV VYV

If the move was initiated by another client, instead of onCl i ent Move the following event is called:

void ondient MoveMovedEvent (server Connecti onHandl er | D, clientlD, ol dChannel | D,
newChannel I D, visibility, noverlD, noverNanme, noverUni queldentifier, noveMessage);

ui nt 64 server Connecti onHandl er | D;
anyl D clientlD;

ui nt 64 ol dChannel I D,

ui nt 64 newChannel | D,

int visibility;

anyl D nmover | D

const char* nover Nane;

noveMessage nover Uni quel dentifier;
nmoveMessage noveMessage;

LikeonCl i ent MoveEvent but with additional information about the client, which has initiated the move: nover | Dde-
finesthe ID, nover Nane the nickname and nover Uni quel denti fi er the unique ID of the mover client. noveMes-
sage contains a string giving the reason for the move.

If ol dChannel | Dis O, the client has just connected to the server. If newChannel | Dis 0, the client disconnected. Both
values cannot be O at the sametime.

79

TeamSpeak 3 Client
SDK Developer Manual

Creating a new channel

To create a channel, set the various channel variables using t s3cl i ent _set Channel Vari abl eAsl nt and
ts3client _set Channel Vari abl eAsSt ri ng. Pass zero as the channel 1D parameter.

Then flush the changes to the server by calling:

unsigned int ts3client_flushChannel Creation(serverConnectionHandl erl D, channel Par -
entlD);

ui nt 64 server Connecti onHandl er | D
ui nt 64 channel Parent | D;

Parameters
* server Connecti onHandl er| D

ID of the server connection handler to which the channel changes should be flushed.
* channel Parent 1D

ID of the parent channel, if the new channel is to be created as subchannel. Pass zero if the channel should be created as
top-level channel.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

After flushing the changes to the server, the following event will be called on successful channel creation:

voi d onNewChannel Cr eat edEvent (server Connecti onHandl er1 D, channel | D, channel Parent| D,
i nvoker | D, invokerNane, invokerUniqueldentifier);

ui nt 64 server Connecti onHandl er | D;

ui nt 64 channel | D;

ui nt 64 channel Parent | D;

anyl D i nvoker| D,

const char* invoker Nane;

const char* invokerUni queldentifier;

Parameters
* server Connecti onHandl er| D

ID of the server connection handler where the channel was created.
« channel I D

ID of the created channel. Channel 1Ds start with the value 1.

80

TeamSpeak 3 Client
SDK Developer Manual

channel Parent | D
ID of the parent channel.
* invokerl| D
ID of the client who requested the creation. If zero, the request was initiated by the server.
* i nvoker Name
Name of the client who requested the creation. If requested by the server, the nameis empty.
* i nvoker Uni quel dentifier

Unique ID of the client who requested the creation.

Example code to create a channel:
#define CHECK_ERROR(x) if((error = x) != ERROR ok) { goto on_error; }

int createChannel (ui nt64 scHandl erl D, uint64 parentChannel | D, const char* name, const char* topic,
const char* description, const char* password, int codec, int codecQuality,
int mxCients, int familyMaxCients, int order, int perm
int semperm int default) {
unsigned int error;

/* Set channel data, pass 0 as channel 1D */

CHECK_ERROR(t s3cl i ent _set Channel Vari abl eAsStri ng(scHandl er| D,
CHECK_ERROR(t s3cl i ent _set Channel Vari abl eAsStri ng(scHandl er| D,
CHECK_ERROR(t s3cl i ent _set Channel Vari abl eAsStri ng(scHandl er| D,
CHECK_ERROR(t s3cl i ent _set Channel Vari abl eAsStri ng(scHandl er| D,
CHECK_ERROR(t s3cl i ent _set Channel Vari abl eAsl nt (scHandl er | D,
CHECK_ERROR(t s3cl i ent _set Channel Vari abl eAsl nt (scHandl er | D,
CHECK_ERROR(t s3cl i ent _set Channel Vari abl eAsl nt (scHandl er | D,
CHECK_ERROR(t s3cl i ent _set Channel Vari abl eAsl nt (scHandl er | D,
CHECK_ERROR(t s3cl i ent _set Channel Vari abl eAsl nt (scHandl er | D,
CHECK_ERROR(t s3cl i ent _set Channel Vari abl eAsl nt (scHandl er | D,
CHECK_ERROR(t s3cl i ent _set Channel Vari abl eAsl nt (scHandl er | D,
CHECK_ERROR(t s3cl i ent _set Channel Vari abl eAsl nt (scHandl er | D,

CHANNEL_NAME, nane));

CHANNEL_TOPI C, topic));

CHANNEL_DESCRI PTI ON, desc));
CHANNEL_PASSWORD, password));
CHANNEL_CCDEC, codec));
CHANNEL_CODEC_QUALI TY, codecQuality));
CHANNEL_MAXCLI ENTS, maxdients));
CHANNEL_MAXFAM LYCLI ENTS, fam | yMaxCients));
CHANNEL_CRDER, order));
CHANNEL_FLAG_PERVANENT, pern));
CHANNEL_FLAG_SEM _PERVANENT, sem perm));
CHANNEL_FLAG DEFAULT, default));

OCO0OO0O0O0O0O0O0O00OO0OOo

/* Flush changes to server */
CHECK_ERROR(t s3client_flushChannel Creati on(scHandl erl D, parent Channel ID));
return 0; /* Success */

on_error:

printf("Error creating channel: %\ n", error);
return 1; /* Failure */

}

Deleting a channel

A channél can be removed with

unsigned int ts3client_request Channel Del et e(server Connecti onHandl erl D, channel I D,
force, returnCode);

ui nt 64 server Connecti onHandl er | D;
ui nt 64 channel | D;

81

TeamSpeak 3 Client
SDK Developer Manual

int force;
const char* returnCode;

Parameters
» server ConnectionHandl er| D
ID of the server connection handler on which the channel should be deleted.
« channel I D
The ID of the channel to be deleted.
« force

If 1, the channel will be deleted even when it is not empty. Clients within the deleted channel are transfered to the default
channel. Any contained subchannels are removed as well.

If O, the server will refuse to a channel that is not empty.
* returnCode
See return code documentation. Pass NULL if you do not need this feature.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

After the request has been sent to the server, the following event will be called:

voi d onDel Channel Event (server Connecti onHandl er|I D, channel I D, i nvoker| D, i nvoker Nane,
i nvoker Uni quel dentifier);

ui nt 64 server Connecti onHandl er | D;

ui nt 64 channel | D;

anyl D i nvoker | D

const char* invokerName;

const char* invokerUni queldentifier;

Parameters
» server Connecti onHandl er| D

ID of the server connection handler on which the channel was deleted.
e channel I D

The ID of the deleted channel.

* invokerl| D

82

TeamSpeak 3 Client
SDK Developer Manual

The ID of the client who requested the deletion. If zero, the deletion was initiated by the server (for example automatic
deletion of empty non-permanent channels).

* i nvoker Name
The name of the client who requested the deletion. Empty if requested by the server.
e i nvoker Uni quel dentifier

The unique ID of the client who requested the deletion.

Moving a channel

To move achannel to anew parent channel, call

unsigned int ts3client_requestChannel Move(server Connecti onHandl erl D, channel | D,
newChannel Parent | D, newChannel Order, returnCode);

ui nt 64 server Connecti onHandl er | D;
ui nt 64 channel | D;
ui nt 64 newChannel Parent| D;

ui nt 64 newChannel Or der;
const char* returnCode;

Parameters
» server ConnectionHandl er| D
ID of the server connection handler on which the channel should be moved.
« channel I D
ID of the channel to be moved.
* newChannel Parent| D
ID of the parent channel where the moved channel is to be inserted as child. Use O to insert astop-level channel.
* newChannel Or der

Channel order defining where the channel should be sorted under the new parent. Pass O to sort the channel right after the
parent. See the chapter Channel sorting for details.

* returnCode
See return code documentation. Pass NULL if you do not need this feature.

Returns ERROR_ok on success, otherwise an error code as defined in publ i ¢c_errors. h.

83

TeamSpeak 3 Client
SDK Developer Manual

After sending the request, the following event will be called if the move was successful:

voi d onChannel MoveEvent (server Connecti onHandl er1 D, channel I D, newChannel Parent| D,
i nvoker | D, invokerNane, invokerUniqueldentifier);

ui nt 64 server Connecti onHandl er | D
ui nt 64 channel | D;

ui nt 64 newChannel Parent| D;

anyl D i nvoker | D,

const char* invoker Namng;
const char* invokerUni queldentifier;

Parameters
» server ConnectionHandl er| D
ID of the server connection handler on which the channel was moved.
* channel I D
The ID of the moved channel.
* newChannel Parent| D
ID of the parent channel where the moved channel isinserted as child. O if inserted as top-level channel.
* invokerl| D
The ID of the client who requested the move. If zero, the move was initiated by the server.
* i nvoker Nane
The name of the client who requested the move. Empty if requested by the server.
* i nvoker Uni quel dentifier

The unique ID of the client who requested the move.

Text chat

In addition to voice chat, TeamSpeak 3 allows clients to communicate with text-chat. Valid targets can be aclient, channel or
virtual server. Depending on the target, there are three functions to send text messages and one callback to receive them.

Sending

To send a private text message to a client:

unsi gned int ts3client_request SendPrivat eText Msg(server Connecti onHandl er| D, nessage,
targetClientl D, returnCode);

ui nt 64 server Connecti onHandl er | D;

TeamSpeak 3 Client
SDK Developer Manual

const char* nessage;
anyl D targetCientl D
const char* returnCode;

Parameters
» server Connecti onHandl er| D
Id of the target server connection handler.
* nmessage
String containing the text message
e targetCientID
Id of the target client.
* returnCode
See return code documentation. Pass NULL if you do not need this feature.

Returns ERROR_ok on success, otherwise an error code asdefined inpubl i ¢_errors. h.

To send atext message to a channel:

unsi gned i nt ts3client_request SendChannel Text Msg(server Connecti onHandl er| D, nessage,
t ar get Channel I D, returnCode);

ui nt 64 server Connecti onHandl er | D;
const char* nessage;

anyl D tar get Channel I D
const char* returnCode;

Parameters
» server Connecti onHandl er|I D
Id of the target server connection handler.
* message
String containing the text message
e target Channel I D

Id of the target channel.

85

TeamSpeak 3 Client
SDK Developer Manual

e returnCode
See return code documentation. Pass NULL if you do not need this feature.

Returns ERROR _ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

To send atext message to the virtual server:

unsi gned int ts3client_request SendServer Text Msg(server Connecti onHandl erI D, message,
ret urnCode) ;

ui nt 64 server Connecti onHandl er| D

const char* nessage;
const char* returnCode;

Parameters
» server Connecti onHandl er| D
Id of the target server connection handler.
e nmessage
String containing the text message
* returnCode
See return code documentation. Pass NULL if you do not need this feature.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

Example to send atext chat to aclient with ID 123:

const char *msg = "Hell o TeanSpeak!";
anylD targetClient| D = 123;

if(ts3client_requestSendPrivateText Msg(scHandl erl D, nmsg, targetCient, NULL) != ERROR ok) {
/* Handle error */

}
Receiving
The following event will be called when atext message is received:

voi d onText MessageEvent (server Connecti onHandl er1 D, targetMde, tolD, from D, from
Name, fromni queldentifier, nessage);

ui nt 64 server Connecti onHandl er | D;

86

TeamSpeak 3 Client
SDK Developer Manual

anyl D tar get Mode;

anyl D tol D

anyl D from D

const char* fromName;

const char* fronni quel dentifier;
const char* nessage;

Parameters
* server Connecti onHandl erl D

ID of the server connection handler from which the text message was sent.
e target Mode

Target mode of this text message. The value is defined by the enum TextM essageT argetM ode:

enum Text MessageTar get Mbde {
Text MessageTar get _CLI ENT=1,
Text MessageTar get _ CHANNEL,
Text MessageTar get _SERVER,
Text MessageTar get _MAX

}s

«tolD
Id of the target of the text message.
e fromD
Id of the client who sent the text message.
+ fromNane
Name of the client who sent the text message.
« fromni quel dentifier
Unique ID of the client who sent the text message.
* nmessage

String containing the text message.

Kicking clients
Clients can be forcefully removed from a channel or the whole server. To kick a client from a channel or server call:

unsi gned int ts3client_requestCientKi ckFronChannel (server Connecti onHandl erI D, cli -
ent| D, ki ckReason, returnCode);

ui nt 64 server Connecti onHandl er | D;

87

TeamSpeak 3 Client
SDK Developer Manual

anyl D clientlD;
const char* ki ckReason;
const char* returnCode;

unsigned int ts3client _requestdientKickFronServer(serverConnectionHandlerI D, cli-
ent| D, ki ckReason, returnCode);

ui nt 64 server Connecti onHandl er | D;
anyl D clientlD;

const char* ki ckReason;
const char* returnCode;

Parameters
e server Connecti onHandl er| D

Id of the target server connection.

clientlD
The ID of the client to be kicked.
* ki ckReason
A short message explaining why the client is kicked from the channel or server.
* returnCode
See return code documentation. Pass NULL if you do not need this feature.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

After successfully requesting a kick, one of the following events will be called:

voi d ond i ent Ki ckFr onChannel Event (server Connecti onHandl er1 D, clientl D, ol dChannel I D,
newChannel I D, visibility, kickerlD, kickerNane, kickerUniqueldentifier, KkickMes-
sage) ;

ui nt 64 server Connecti onHandl er | D;
anyl D clientlD

ui nt 64 ol dChannel | D;

ui nt 64 newChannel | D;

int visibility;

anyl D ki cker 1 D;

const char* ki cker Nane;

const char* ki cker Uni quel dentifier;

88

TeamSpeak 3 Client
SDK Developer Manual

const char* ki ckMessage;

voi d ond i ent Ki ckFronter ver Event (server Connecti onHandl er1 D, clientlD, ol dChannellD,
newChannel I D, visibility, kickerlD, KkickerNane, KkickerUniqueldentifier, KkickMes-
sage) ;

ui nt 64 server Connecti onHandl er | D;

anyl D clientlD

ui nt 64 ol dChannel | D,

ui nt 64 newChannel | D;

int visibility;

anyl D ki cker | D;

const char* ki cker Nane;

const char* ki cker Uni quel dentifier;

const char* ki ckMessage;

Parameters
» server Connecti onHandl er| D
ID of the server connection handler on which the client was kicked
e clientlD
ID of the kicked client.
* ol dChannel I D
ID of the channel from which the client has been kicked.
* newChannel I D
ID of the channel where the kicked client was moved to.
e visibility

Describes if the moved client enters, retains or leaves visibility. See explanation of the enum Visibility for the function
onCl i ent MoveEvent .

When kicked from a server, visibility can be only LEAVE_VI SI Bl LI TY.
* kickerlD

ID of the client who requested the kick.
+ ki cker Nane

Name of the client who requested the kick.

» ki cker Uni quel dentifier

89

TeamSpeak 3 Client
SDK Developer Manual

Unique ID of the client who requested the kick.
» ki cker Message

Message giving the reason why the client has been kicked.

Channel subscriptions

Normally a user only sees other clients who are in the same channel. Clients joining or leaving other channels or changing
status are not displayed. To offer a way to get natifications about clients in other channels, a user can subscribe to other
channels. It would also be possible to always subscribe to all channels to get notifications about all clients on the server.

Subscriptions are meant to have a flexible way to balance bandwidth usage. On a crowded server limiting the number of

subscribed channels is a way reduce network traffic. Also subscriptions allow to usage “private” channels, whose members
cannot be seen by other users.

E Note

A client isautomatically subscribed to the current channel.
To subscribe to alist of channels (zero-terminated array of channel IDs) call:

unsi gned int ts3client_request Channel Subscri be(server Connecti onHandl erl D, channel | -
DArray, returnCode);

ui nt 64 server Connecti onHandl er | D

const ui nt64* channel | DArray;
const char* returnCode;

To unsubscribe from alist of channels (zero-terminated array of channel 1Ds) call:

unsi gned i nt ts3client_request Channel Unsubscri be(server Connecti onHandl er1 D, channel -
| DArray, returnCode);

ui nt 64 server Connecti onHandl er | D;

const ui nt64* channel | DArray;
const char* returnCode;

To subscribe to all channels on the server cal:

unsi gned i nt ts3client_request Channel Subscri beAl |l (server Connecti onHandl erl D, return-
Code) ;

ui nt 64 server Connecti onHandl er | D;
const char* returnCode;

90

TeamSpeak 3 Client
SDK Developer Manual

To unsubscribe from all channels on the server call:

unsigned int ts3client_requestChannel Unsubscri beAl |l (serverConnectionHandl erl D, re-
t ur nCode) ;

ui nt 64 server Connecti onHandl er | D;
const char* returnCode;

To check if a channel is currently subscribed, check the channel property CHANNEL FLAG ARE SUBSCRI BED with
ts3client _get Channel Vari abl eAsl nt:

int isSubscribed;

i f(ts3client_getChannel Vari abl eAsl nt (scHandl er1 D, channel | D, CHANNEL_FLAG ARE_SUBSCRI BED, &i sSubscri bed)
= ERROR_ok) {
/* Handl e error */

}

The following event will be sent for each successfully subscribed channel:
voi d onChannel Subscri beEvent (server Connecti onHandl er| D, channel I D);

ui nt 64 server Connecti onHandl er | D;
ui nt 64 channel | D;

Provided for convinience, to mark the end of mulitple callsto onChannel Subscri beEvent when subscribing to several
channels, this event is called:

voi d onChannel Subscri beFi ni shedEvent (server Connecti onHandl er | D);

ui nt 64 server Connecti onHandl er | D;

The following event will be sent for each successfully unsubscribed channel:
voi d onChannel Unsubscri beEvent (server Connecti onHandl er|I D, channel I D);

ui nt 64 server Connecti onHandl er | D;
ui nt 64 channel | D;

Similar like subscribing, this event is a convinience callback to mark the end of multiple calls to onChannel Unsub-
scri beEvent:

voi d onChannel Unsubscri beFi ni shedEvent (server Connecti onHandl er| D) ;

ui nt 64 server Connecti onHandl er | D;

91

TeamSpeak 3 Client
SDK Developer Manual

Once a channd has been subscribed or unsubscribed, the event onCl i ent MoveSubscri pti onEvent is sent for each
client in the subscribed channel. The event is not to be confused with onCl i ent MoveEvent , which is called for clients
actively switching channels.

void ondientMveSubscriptionEvent (serverConnectionHandl erI D, clientlD, ol dChan-
nel I D, newChannel ID, visibility);

ui nt 64 server Connecti onHandl er | D
anyl D clientlD;
ui nt 64 ol dChannel | D;

ui nt 64 newChannel | D;
int visibility;

Parameters
» server Connecti onHandl erl D

The server connection handler ID for the server where the action occured.
e clientlD

Theclient ID.
e ol dChannel I D

ID of the subscribed channel where the client left visibility.
* newChannel I D

ID of the subscribed channel where the client entered visibility.
e visibility

Defined in the enum Visibility

enum Visibility {
ENTER VI SI BI LI TY = 0,
RETAI N_VI SI BI LI TY,
LEAVE VI SI BI LI TY

* ENTER_ VI SI BI LI TY
Client entered visibility.

* LEAVE_VISI BILITY
Client left visibility.

* RETAIN_ VI SIBILITY

Does not occur with onClientM oveSubscriptionEvent.

92

TeamSpeak 3 Client
SDK Developer Manual

Muting clients locally

Individual clients can belocally muted. Thisinformation is handled client-side only and not visibile to other clients. It mainly
serves as a sort of individual "ban" or "ignore" feature, where users can decide not to listen to certain clients anymore.

When a client becomes muted, he will no longer be heard by the muter. Also the TeamSpeak 3 server will stop sending voice
packets.

The mute state is not visible to the muted client nor to other clients. It is only available to the muting client by checking the
CLI ENT_I S_MJTED client property.

To mute one or more clients:

unsi gned int ts3client_requestMuted ients(serverConnectionHandl erl D, clientlDArray,
r et ur nCode) ;

ui nt 64 server Connecti onHandl er | D;
const anyl D* clientlDArray;
const char* returnCode;

To unmute one or more clients:

unsigned int ts3client_requestUnnutedients(serverConnectionHandl erl D, clientl DAr-
ray, returnCode);

ui nt 64 server Connecti onHandl er | D;
const anyl D* clientl|DArray;
const char* returnCode;

Parameters
» server ConnectionHandl er| D
ID of the server connection handle on which the client should be locally (unymuted
e clientlDArray
NULL-terminated array of client IDs.
* returnCode
See return code documentation. Pass NULL if you do not need this feature.
Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

Example to mute two clients:

anylD clientlDArray[3]; // List of two clients plus termnating zero
clientlDArray[0] = 123; // First client IDto mute
clientl DArray[1] = 456; // Second client IDto mute

93

TeamSpeak 3 Client
SDK Developer Manual

clientlDArray[2] = O; /! Term nating zero

if(ts3client_requestMuted ients(scHandl erID, clientlDArray) != ERROR ok) /* Mute clients */
printf("Error muting clients: %\n", error);

To check if aclient is currently muted, query the CLI ENT_| S MUTED client property:
int clientlsMited;

if(ts3client_getCientVariabl eAslnt(scHandlerI D, clientlD, CLIENT_IS MJTED, &clientlsMited) != ERROR ok)
printf("Error querying client muted state\n);

Custom encryption

As an optional feature, the TeamSpeak 3 SDK allows users to implement custom encryption and decryption for all network
traffic. Custom encryption replaces the default AES encryption implemented by the TeamSpeak 3 SDK. A possible reason to
apply own encryption might be to make ones TeamSpeak 3 client/server incompatible to other SDK implementations.

Custom encryption must be implemented the same way in both the client and server.

§ Note
If you do not want to use this feature, just don't implement the two encryption callbacks.

To encrypt outgoing data, implement the callback:
voi d onCust onPacket Encrypt Event (dat aToSend, sizeO Data);

char** dataToSend;
unsi gned int* sizeO Dat a;

Parameters

» dataToSend
Pointer to an array with the outgoing data to be encrypted.
Apply your custom encryption to the data array. If the encrypted datais smaller than sizeOf Data, write your encrypted data
into the existing memory of dataToSend. If your encrypted data is larger, you need to allocate memory and redirect the
pointer dataToSend. Y ou need to take care of freeing your own allocated memory yourself. The memory allocated by the
SDK, to which dataToSend is originally pointing to, must not be freed.

* sizeOf Data

Pointer to an integer value containing the size of the data array.

To decrypt incoming data, implement the callback:
voi d onCust onPacket Decr ypt Event (dat aRecei ved, dat aRecei vedSi ze);

char** dat aRecei ved,;

94

TeamSpeak 3 Client
SDK Developer Manual

unsi gned int* dat aReceivedSi ze;

Parameters
» dat aRecei ved
Pointer to an array with the received data to be decrypted.

Apply your custom decryptionto thedataarray. If the decrypted datais smaller than dataReceivedSize, write your decrypted
datainto the existing memory of dataReceived. If your decrypted datais larger, you need to allocate memory and redirect
the pointer dataReceived. Y ou need to take care of freeing your own allocated memory yourself. The memory allocated by
the SDK, to which dataReceived is originally pointing to, must not be freed.

+ dat aRecei vedSi ze
Pointer to an integer value containing the size of the data array.

Example code implementing a very simple XOR custom encryption and decryption (also see the SDK examples):

voi d onCust onPacket Encrypt Event (char** dat aToSend, unsigned int* sizeO Data) {
unsigned int i;
for(i =0; i < *sizeOfData; i++) {
(*dataToSend)[i] ~= CUSTOM CRYPT_KEY;

}
}

voi d onCust onPacket Decrypt Event (char** dat aRecei ved, unsigned int* dataRecei vedSi ze) {
unsigned int i;
for(i = 0; i < *dataReceivedSi ze; i++) {
(*dat aRecei ved) [i] ~= CUSTOM CRYPT_KEY;
}
}

Other events

When aclient starts or stops talking, atalk status change event is sent by the server:

voi d onTal kSt at usChangeEvent (server Connecti onHandl erI D, status, isReceivedwi sper,
clientID);

ui nt 64 server Connecti onHandl er | D
i nt status;

i nt i sRecei vedWhi sper;

anyl D clientlD;

Parameters
e server Connecti onHandl er| D
ID of the server connection handler on which the event occured.

e status

95

TeamSpeak 3 Client
SDK Developer Manual

Possible return values are defined by the enum TalkStatus:

enum Tal kSt atus {
STATUS_NOT_TALKI NG = 0,
STATUS_TALKING = 1,
STATUS_TALKI NG WHI LE_DI SABLED = 2,

}s

STATUS TALKI NG and STATUS TALKI NG are triggered everytime a client starts or stops taking.
STATUS_TALKI NG WHI LE_DI SABLED striggered only if the microphoneis muted. A client application might usethis
to implement a mechanism warning the user he is talking while not sending to the server or just ignore this value.

e i sRecei vedWhi sper
1if the talk event was caused by whispering, 0 if caused by normal talking.
e clientlD

ID of the client who started or stopped talking.

If aclient drops his connection, atimeout event is announced by the server:

void ondientMveTi meout Event (server Connecti onHandl erI D, clientlD, ol dChannellD,
newChannel I D, visibility, tineoutMssage);

ui nt 64 server Connecti onHandl er | D;
anyl D clientlD;

ui nt 64 ol dChannel | D,

ui nt 64 newChannel | D,

int visibility;

const char* tineout Message;

Parameters
* server Connecti onHandl er| D

ID of the server connection handler on which the event occured.
e clientlD

ID of the moved client.
* ol dChannel I D

ID of the channel the leaving client was previously member of.
* newChannel I D

0, asclient isleaving.

e visibility

96

TeamSpeak 3 Client
SDK Developer Manual

Always LEAVE_VI SI BI LI TY.
e tinmeout Message

Optional message giving the reason for the timeout. UTF-8 encoded.

When the description of a channel was edited, the following event is called:
voi d onChannel Descri pti onUpdat eEvent (server Connecti onHandl erI D, channel | D);

ui nt 64 server Connecti onHandl er | D;
ui nt 64 channel | D;

Parameters
» server Connecti onHandl erl D

ID of the server connection handler on which the event occured.
e shut dowmnMessage

ID of the channel with the edited description.

The new description can be queried with ts3client_get Channel Vari abl eAsStri ng(channel | D,
CHANNEL _DESCRI PTI ON) .

This event tells the client that the specified channel has been modified. The GUI should fetch the channel data with
ts3client _get Channel Vari abl eAsl nt andts3client _get Channel Vari abl eAsSt ri ng and update the
channel display.

voi d onUpdat eChannel Event (server Connecti onHandl er| D, channel I D);

ui nt 64 server Connecti onHandl er | D;
ui nt 64 channel | D;

Parameters
» server Connecti onHandl er| D

ID of the server connection handler on which the event occured.
e channel I D

ID of the updated channel.

97

TeamSpeak 3 Client
SDK Developer Manual

The following event is called when a channel password was modified. The GUI might remember previously entered channel
passwords, so this callback announces the stored password might be invalid.

voi d onChannel Passwor dChangedEvent (server Connect i onHandl erI D, channel |1 D);

ui nt 64 server Connecti onHandl er | D;
ui nt 64 channel | D

Parameters
» server Connecti onHandl er|I D

ID of the server connection handler on which the event occured.
e channel I D

ID of the channel with the changed password.

Miscellaneous functions

Memory dynamically allocated in the Client Lib needs to be released with:
unsigned int ts3client_freeMenory(pointer);

voi d* pointer;

Parameters
e pointer

Address of the variable to be released.
Example:

char* version;

if(ts3client_getdientlLibVersion(&ersion) == ERROR ok) {
printf("Version: %\n", version);
ts3client_freeMenory(version);

2 | mportant

Memory must not bereleased if the function, which dynamically allocated the memory, returned an error. In that
case, the result is undefined and not initialized, so freeing the memory might crash the application.

98

TeamSpeak 3 Client
SDK Developer Manual

Instead of sending the sound through the network, it can be routed directly through the playback device, so the user will get
immediate audible feedback when for example configuring some sound settings.

unsi gned int ts3client_setlLocal Test Mode(server Connecti onHandl erl D, status);

ui nt 64 server Connecti onHandl er | D;
i nt st at us;

Parameters
e server Connecti onHandl er|I D

ID of the server connection handler for which the local test mode should be enabled or disabled.
» status

Pass 1 to enable local test mode, O to disable.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

FAQ

1 How to implement Push-To-Talk?

Push-To-Talk should beimplemented by toggling theclient variable CLI ENT_| NPUT _DEACTI VATEDusing thefunc-
tiont s3cl i ent _set C i ent Sel f Vari abl eAsl nt . Thevariablecan beset to thefollowing val ues (seetheenum
InputDeactivationStatusin publ i ¢c_def i ni ti ons. h):

* | NPUT_ACTI VE
* | NPUT_DEACTI VATED
For Push-To-Talk toggle between | NPUT_ACTI VE (talking) and | NPUT_DEACTI VATED (not talking).

Example code:

unsigned int error;
bool shoul dTal k;

shoul dTal k = i sPushToTal kButtonPressed(); // Your key detection inplenentation
if((error = ts3client_setdientSelfVariabl eAslnt(scHandl erl D, CLI ENT_I NPUT_DEACTI VATED,
shoul dTal k ? | NPUT_ACTI VE : | NPUT_DEACTI VATED))
= ERROR_ok) {
char* errorMsg;
i f(ts3client_getErrorMessage(error, &errorMg) != ERROR ok) {
printf("Error toggling push-to-talk: 9%\n", errorMsQg);
ts3client_freeMenory(errorMQg);

}
return;
}
i f(ts3client_flushdientSelfUpdates(scHandl erl D, NULL) != ERROR ok) {

char* errorMsg;

i f(ts3client_getErrorMessage(error, &errorMg) != ERROR ok) {
printf("Error flushing after toggling push-to-talk: 9%\n", errorMsQg);
ts3client_freeMenory(errorMg);

}

99

TeamSpeak 3 Client
SDK Developer Manual

}

It is not necessary to close and reopen the capture device to implement Push-To-Talk.

Basically it would be possible to toggle CLI ENT_I NPUT_MJTED as well, but the advantage of
CLI ENT_I NPUT_DEACTI VATED isthat the change is not propagated to the server and other connected clients, thus
saving network traffic. CLI ENT_I NPUT_MJTED should instead be used for manually muting the microphone when
using Voice Activity Detection instead of Push-To-Talk.

If you need to query the current muted state, uset s3cl i ent _get C i ent Sel f Vari abl eAsl nt:

i nt hardwar eSt at us, deactivated, muted;

i f(ts3client_getdientSelfVariableAslnt(scHandl erl D, CLI ENT_| NPUT_HARDWARE,
&har dwar eSt at us) ! = ERROR ok) {
/* Handl e error */

}
i f(ts3client_getdientSelfVariableAslnt(scHandl erl D, CLI ENT_I NPUT_DEACTI VATED,
&deactivated) != ERROR ok) {
/* Handl e error */
}
i f(ts3client_getdientSelfVariableAslnt(scHandl erl D, CLI ENT_I NPUT_MJTED,
&muted) != ERROR ok) {
/* Handl e error */

}

i f (hardwar eSt at us == HARDWAREI NPUT_DI SABLED) {
/* No capture device available */

i f(deactivated == | NPUT_DEACTI VATED) ({
/* Input was deactivated for Push-To-Talk (not propagated to server) */

}
i f(muted == MJTEI NPUT_MJTED) {
/* Input was nuted (propagated to server) */

}

When using Push-To-Talk, you should deactivate VVoice Activity Detection in the preprocessor or keep the VAD level
very low. To deactivate VAD, use:

ts3client_set PreProcessor Confi gVal ue(server Connecti onHandl erI D, "vad", "false");

How to adjust the volume?

Output volume

Voice output volume can be adjusted by changing the “volume modifier” playback option using the function
ts3client _set Pl aybackConfi gVal ue. Thevaueisin decibel, so 0 is no modification, negative values make

the signal quieter and positive values louder.

Example to increate the output volume by 10 decibel:

ts3client_set Pl aybackConfi gVal ue(scHandl er1 D, "vol ume_nodifier", 10);
Input volume

Automatic Gain Control (AGC) takes care of theinput volume during preprocessing automatically. Instead of modifying
the input volume directory, you modify the AGC preprocessor settings with set Pr oPr ocessor Conf i gVal ue.

100

TeamSpeak 3 Client
SDK Developer Manual

Revision history

Revision History

Revision 1.34 |06 Sep 2011 |

Added new function ts3client_getClientLibVersionNumber

Revision 1.33 |04 Aug 2011 |
Overhauled documentation, removed FMOD functions which got replaced by own sound backends.
Revision 1.32 |17 Sep 2010 |

Added documentation for new voice data encryption settings.

Revision 1.31 10 Jun 2010 |

Added new whisper callbacks and functions, added channel latency factor property, changed Mac OS X system requirements.

Revision 1.30 [22 Feb 2010 |

Updated channel sorting chapter for recent anyID to uint64 changed. Added set/getChannel V ariableAsUInt64 functions.

Revision 1.29 |28 Jan 2010 |

Changed server and channel 1Ds from type anyID to uint64. Adjusted onTextM essageEvent callback and send message functions.

Revision 1.28 [29 Oct 2009 |

Added ts3client_setClientV olumeModifier function to Playback chapter. Client whisper list setting is always enabled.

Revision 1.27 |05 Oct 2009 |

Added port parameter to ts3client_spawnNewServerConnectionHandler and extraM essage to onServerErrorEvent

Revision 1.26 |14 Sep 2009 |
Added custom encryption callbacks

Revision 1.25 |05 May 2009 |
Updated documentation on getParentChannel Of Channel.

Revision 1.24 [29 Apr 2009 |
Updated documentation on requestClientSetWhisperList.

Revision 1.23 [27 Mar 2009 |

Renamed getCurrentPlaybackDevice/getCurrentCaptureDevice to getCurrentPlaybackDeviceName/getCurrentCaptureDeviceName. Use
vacant functions to return the currently open FMOD System object.

Revision 1.22 |9 Feb 2009 |

Custom FMOD objects API changes. Changed playback value voice _factor to voice_modifier, removed playWaveFile function and
voice factor wave.

Revision 1.21 |23 Jan 2009 |
Added chapter about custom FMOD objects.

Revision 1.20 |19 Dec 2008 |
Added voice recording chapter.

Revision 1.19 |9 Dec 2008 |

Added returnCode to functions interacting with server. Updated some functions with added uniquel dentifier parameters.

Revision 1.18 |7 Nov 2008 |

Error handling API change.

Revision 1.17 |13 Oct 2008 |

Added ts3client_getServerConnectionHandlerList function.

Revision 1.16 |06 Oct 2008 |

Changed function prefix from ts3_ to ts3client_ so both client and server shared libraries can be |oaded in the same application.
Revision 1.15 |22 Sep 2008 |

Added echo canceling to preprocessor section.

Revision 1.14 |9 Sep 2008 |

Removed unused functions and enums, which were removed from the SDK headers.

Revision 1.13 |3 Sep 2008 |

Removed "enabled" preprocessor flag. Changed default server port from 3000 to 9987. Adjusted ts3client_initClientLib parameters.

Revision 1.12 |8 Jul 2008 |

New query clients/channel functions. New individual channel codec quality settings. Updated encoding chapter and
ts3client_initClientLib() function. Removed agc_increment and agc_decrement preprocessor options.

Revision 1.11 |30 May 2008 |

New server properties added. force parameter in ts3client_requestChannel Del ete added. Added note about cdecl calling convention.

Revision 1.10 [22 May 2008 |

Added new ts3client_createl dentity function and updated docs for onTalkStatusChangeEvent.

Revision 1.9 |16 May 2008 |

TeamSpeak 3 Client
SDK Developer Manual

Index

Symbols
3D sound, 48

A

AGC, 36
Automatic Gain Control, 36

B
bandwidth, 34

C

callback, 8

calling convention, 5

capture device, 22

Channel order, 73

Channel voice data encryption, 72
client 1D, 15

codec, 34

contact, 2

copyright, 2

E

encoder, 35

enums
Channel Properties, 67
ClientProperties, 57, 62
CodecEncryptionMode, 76
ConnectStatus, 14, 17, 73
I nputDeactivationStatus, 99
LogLevel, 20, 20
LogType, 8, 20
TextMessageTargetMode, 87
Virtual ServerProperties, 74
Visihility, 78, 89, 92

error codes, 6

events
onChannel DescriptionUpdateEvent, 97
onChannelMoveEvent, 84
onChannel PasswordChangedEvent, 98
onChannel SubscribeEvent, 91
onChannel SubscribeFinishedEvent, 91
onChannelUnsubscribeEvent, 91
onChannel UnsubscribeFinishedEvent, 92
onClientKickFromChannel Event, 89
onClientKickFromServerEvent, 89
onClientMoveEvent, 78
onClientMoveMovedEvent, 79

102

TeamSpeak 3 Client
SDK Developer Manual

onClientM oveSubscriptionEvent, 92
onClientMoveTimeoutEvent, 96
onConnectStatusChangeEvent, 14, 17
onCustom3dRaolloffCal culationClientEvent, 51
onCustom3dRaolloffCal cul ationWaveEvent, 51
onCustomPacketDecryptEvent, 95
onCustomPacketEncryptEvent, 94
onDelChannelEvent, 82

onEditCapturedV oiceDataEvent, 45
onEditMixedPlaybackV oiceDataEvent, 44
onEditPlaybackV oiceDataEvent, 42
onEditPostProcessV oiceDataEvent, 43
onlgnoredWhisperEvent, 65
onNewChannel CreatedEvent, 80
onNewChannel Event, 16

onPlayback ShutdownCompl eteEvent, 29
onServerEditedEvent, 76
onServerErrorEvent, 7, 19
onServerStopEvent, 17
onServerUpdatedEvent, 76
onTakStatusChangeEvent, 95
onTextMessageEvent, 87
onUpdateChannel EditedEvent, 71
onUpdateChannel Event, 97
onUpdateClientEvent, 63

onUserL oggingM essageEvent, 21

F

FAQ, 99

functions
ts3client_acquireCustomPlaybackData, 32
ts3client_activateCaptureDevice, 33
ts3client_allowWhispersFrom, 65
ts3client_channel set3DAttributes, 50
ts3client_closeCaptureDevice, 28
ts3client_closePlaybackDevice, 28
ts3client_closeWaveFileHandle, 48
ts3client_createldentity, 12
ts3client_destroyClientLib, 10
ts3client_destroyServerConnectionHandler, 11
ts3client_flushChannel Creation, 80
ts3client_flushChannelUpdates, 70
ts3client_flushClientSelfUpdates, 61
ts3client_freeMemory, 98
ts3client_getCaptureDevicelist, 26
ts3client_getCaptureModelL ist, 24
ts3client_getChannelClientList, 54
ts3client_getChannel| DFromChannelNames, 72
ts3client_getChannelList, 53
ts3client_getChannel OfClient, 54
ts3client_getChannelVariableAsint, 66
ts3client_getChannelVariableAsString, 66

103

TeamSpeak 3 Client
SDK Developer Manual

ts3client_getChannelVariableAsUInt64, 66
ts3client_getClientl D, 15, 56
ts3client_getClientLibVersion, 9
ts3client_getClientLibVersionNumber, 10
ts3client_getClientList, 53
ts3client_getClientSelfVariableAsInt, 57
ts3client_getClientSelfVariableAsString, 57
ts3client_getClientVariableAsInt, 62
ts3client_getClientVariableAsString, 62
ts3client_getClientVariableAsUInt64, 62
ts3client_getConnectionStatus, 15
ts3client_getCurrentCaptureDeviceName, 28
ts3client_getCurrentCaptureMode, 27
ts3client_getCurrentPlaybackDeviceName, 28
ts3client_getCurrentPlayBackMode, 27
ts3client_getDefaultCaptureDevice, 25
ts3client_getDefaultCaptureMode, 24
ts3client_getDefaultPlaybackDevice, 25
ts3client_getDefaultPlayBackMaode, 24
ts3client_getEncodeConfigValue, 35
ts3client_getErrorMessage, 18
ts3client_getParentChannel Of Channel, 55
ts3client_getPlaybackConfigV alueAsFloat, 39
ts3client_getPlaybackDevicelList, 26
ts3client_getPlaybackModeL ist, 24
ts3client_getPreProcessorConfigValue, 36
ts3client_getPreProcessorlnfoVaueFloat, 39
ts3client_getServerConnectionHandlerList, 52
ts3client_getServerVariableAsint, 74
ts3client_getServerVariableAsString, 74
ts3client_getServerVariableAsUInt64, 74
ts3client_initClientLib, 7
ts3client_initiateGraceful Playback Shutdown, 29
ts3client_logMessage, 20
ts3client_openCaptureDevice, 23
ts3client_openPlaybackDevice, 22
ts3client_pauseWavekFileHandle, 48
ts3client_playWaveFile, 46
ts3client_playWaveFileHandle, 47
ts3client_processCustomCaptureData, 31
ts3client_registerCustomDevice, 30
ts3client_removeFromAllowedwWhispersFrom, 66
ts3client_requestChannel Del ete, 82
ts3client_requestChannel Description, 68
ts3client_requestChannelMove, 83
ts3client_requestChannel Subscribe, 90
ts3client_requestChannel SubscribeAll, 90
ts3client_requestChannel Unsubscribe, 90
ts3client_requestChannel UnsubscribeAll, 91
ts3client_requestClientKickFromChannel, 88
ts3client_requestClientKickFromServer, 838
ts3client_requestClientMove, 77

104

TeamSpeak 3 Client
SDK Developer Manual

ts3client_requestClientSetWhisperList, 64
ts3client_requestClientVariables, 63
ts3client_requestMuteClients, 93
ts3client_requestSendChannel TextM sg, 85
ts3client_requestSendPrivateTextMsg, 85
ts3client_requestSendServerTextM sg, 86
ts3client_requestServerVariables, 76
ts3client_requestUnmuteClients, 93
ts3client_set3DWaveAttributes, 52
ts3client_setChannel VariableAsInt, 69
ts3client_setChannel VariableAsString, 70
ts3client_setChannel VariableAsUInt64, 70
ts3client_setClientSelfVariableAsint, 60
ts3client_setClientSelfVariableAsString, 60
ts3client_setClientVolumeModifier, 41
ts3client_setl ocal TestMode, 99
ts3client_setLogVerbosity, 21
ts3client_setPlaybackConfigValue, 40, 100
ts3client_setPreProcessorConfigValue, 37
ts3client_spawnNewServerConnectionHandler, 11
ts3client_startConnection, 12
ts3client_startV oiceRecording, 46
ts3client_stopConnection, 16
ts3client_stopV oi ceRecording, 46
ts3client_systemset3DL istenerAttributes, 49
ts3client_systemset3D Settings, 49
ts3client_unregisterCustomDevice, 31

H
headers, 5

L

Linux, 5
Logging, 19

M
Macintosh, 5

N

narrowband, 34

P

Permanent channel, 69
playback device, 22
preprocessor, 36
PushToTak, 99

R

return code, 7

105

TeamSpeak 3 Client
SDK Developer Manual

S
sampling rates, 34
Semi-permanent channel, 69
server connection handler, 11
structs

TS3 VECTOR, 48
system requirements, 5

T
TeamSpeak Systems, 2

U
ultra-wideband, 34

\%

VAD, 36

Voice Activity Detection, 36
volume factor_wave, 40
volume_modifier, 40, 100

W

welcome message, 14
wideband, 34
Windows, 5

106

	TeamSpeak 3 Client SDK Developer Manual
	Table of Contents
	Copyright
	License agreement

	Introduction
	System requirements
	Overview of header files
	Calling Client Lib functions
	Return code

	Initializing
	The callback mechanism

	Querying the library version
	Shutting down
	Managing server connection handlers
	Connecting to a server
	Disconnecting from a server
	Error handling
	Logging
	User-defined logging

	Using playback and capture modes and devices
	Initializing modes and devices
	Querying available modes and devices
	Checking current modes and devices
	Closing devices
	Using custom devices
	Activating the capture device

	Sound codecs
	Encoder options
	Preprocessor options
	Playback options
	Accessing the voice buffer
	Voice recording

	Playing wave files
	3D Sound
	Query available servers, channels and clients
	Retrieve and store information
	Client information
	Information related to own client
	Information related to other clients
	Whisper lists

	Channel information
	Channel voice data encryption
	Channel sorting

	Server information

	Interacting with the server
	Joining a channel
	Creating a new channel
	Deleting a channel
	Moving a channel
	Text chat
	Sending
	Receiving

	Kicking clients
	Channel subscriptions

	Muting clients locally
	Custom encryption
	Other events
	Miscellaneous functions
	FAQ
	Revision history
	Index

