TeamSpeak 3 Client
SDK Developer Manual

Revision 2015-04-10 16:42:26
Copyright © 2007-2015 TeamSpeak Systems GmbH

Table of Contents

gL T [Tox ' o PR 3
Y S (S LU0 0T 1= £ PN 3
OVENVIEW OF NEBAEY FIlES ..ot et et r ettt e e e et e e e e et e e e eaaenaeeeennns 3
(0= | 1 aTo TR @t TT= o1l T oI {00 o1 o 0= 4
G L0 T 0o L= PP 4

TR (=4 o 5
The callback MEChBNISM ... i et e e e e e e e e e et e e e e et e e e e et eas 6

10 00= oY T aTo i Tl [T ol ir= VY= = Yo o I 7
RS 1011 o o [0 o 8
Managing server CONNECLION NANAIEScouuiiii e e e e e e et e e e e e et e e et e e et e e eaneees 8
(0ol l0Tc ot 1] 0o R (o T TR = /= 9
DISCONNECHING FrOM @ SEIVET ...uiiiiii i e e e e e e e e e e e e et e e e et e e et e e et r e e et e e et e e et s e ean e sen e eatneeeaneeenns 14
o gl 0= To (1T o PPN 15
[0 To o 1o RSN 16
L0 LSS L=t 1= o B oo o 1o PSP 17
Using playback and capture modes and GEVICEScouuiiiiii e e e e e e e e e e e e e e e aanaees 19
RN E= 4T ao M aaToTe (=3F o To e (=Y T 19
Querying available MOAES AN EVICESuiiiiiiiii e e e e e e e e e e e e eanas 20
Checking current MOdeS @nNA GEVICESu.iiuueii et e e e e e e e e e e et e et e e e st e e eaeeeeas 23

(O o1 aTo o (=Y o= 25

(O LT gTo Mot 0 o g0 =Y, o= 26
ACLIVALiNg the CAPLUINE AEVICEve i e e e e e e e e et e e et e et e e et e e aneeeens 29

IS a0 o oo o (= o: PR 30
(oo 0 L= g 0] o1 o - 31
= o] 0Twr=s o) e o) 0] P 32
o = Y] 0 Qo o o) N 35
ACCESSING the VOICE DUFTEN . .oee i e e e e e e e e et e e et e et e e aa e e eanns 38
RV o o I (= oo o 1 oo TP 41

o = Y0 010 ATz Y]S 42
K10 B0 T o U 44
Query available servers, channels and ClIENESc.u oo e e e e e een 47
Retrieve and StOre INFOIMELIONiiiiiii et e et e e et s e e e et e e e e et e e e e et e e e e st e e e eatneeeeatn s 50
(@1 o T o1 {41 7= 1 o) o [PP 50
Information related 10 OWN CHENE ... iiiii e e e e e e et e e e 50
Information related t0 OthEr ClIENESiiuue i e e e e e e 56

R AT LA o 1= S 1T £ Y 58

Channel INFOMMIBLION ... e e e et e e e ettt e e e e et e e e e et r e e e eeteneeeeeteneeeestnaeaenes 60
(019710101 IRYoTTwl=No =1 - W= g Tex Y 014 o] o [66

(01472 10107 o g 11 o [N 67

= VL= T o) 000 o PSP 68

TeamSpeak 3 Client
SDK Developer Manual

INtEraCting With the SEIVE e ettt et e et e et e et e e an e e eaaeeans 71
JOINING @ ChaNNEL ... e et ettt e e e e et e e e e eaas 71
Creating @ NEW CRANNEL ... e e e e e et e et e et e e et r e et e et e e et e eeaneaeans 74
DElEliNg @ CRANNEL ...t et e et et e et e e et e et e e e e e et e e e e ean s 75
MOVING 8 CRANNEL ...ttt e e ettt ettt e et e et e e et e e e et e e et e e et e aean e eenaaes 77
TEXE CRBE ... e e et ettt et e e e een 78

S 010 1 o [T P PP PPPPN 78
S = L1 o TSP UPIRPTRN 80
(Lo 0 o I e 1< o £ 81
Channel SUDSCIIPLIONS ... et e ettt et e et e et e e et e e et e e et e e e an e eeaeeeanaas 83

MULING CHENES TOCBIIY ...t e et e et e et et et e e et e e et e e e an e eanaaes 86

LO0ES (ol g = 0Tet oY/ o) o] o I PP 87

(00 (ol T 072 LSS Vo) {0 LS PPN 88

10 101 g Y= o PP PPPPPTTRPPPPPTN 89

MISCEIIANEOUS TUNCLIONS ...ttt ettt e ettt ettt e et et e e et et e e e e ebe e e e eene e e eenne e eeees 91

L= (=g = TR P PP PSPPI 93
QUENY TNFOMMEBLION ...ttt et e et e et ettt e ettt e et e et et ettt e e et e e et e eetnaeeanaees 93
TN (R = g £ ST PPTSP PP TUPPPPPTPPPPN 97
S 0lc <o I 1001 SO P PP TPSUPPPPPPIN 103
CAlIDBEKS ..ot e e e e e et e e e e et e et bbb e e e aaaaee 105

N O PP UUPPPPTTTTTR 108
How to implement PUSH-TO-TalK?ottt e e et e et e e e e eees 108
HOW t0 adjust the VOIUME? ... e ettt et e e et e e e e e eanns 109
HOW t0 talk 8CroSS ChANNEIS?ottt et e eeena s 110

130 (< PP PP SPPPPT 111

TeamSpeak 3 Client
SDK Developer Manual

Introduction

TeamSpeak 3 is a scalable Voice-Over-IP application consisting of client and server software. TeamSpeak is generaly re-
garded as the leading Vol P system offering a superior voice quality, scalability and usability.

The cross-platform Software Development Kit allows the easy integration of the TeamSpeak client and server technology
into own applications.

Tis document provides an introduction to client-side programming with the TeamSpeak 3 SDK, the so-called Client Lib. This
library encapsulates client-side functionality while keeping the user interface separated and modular.

System requirements

For developing third-party clients with the TeamSpeak 3 Client Lib the following system requirements apply:

Windows

Windows XP, Vista, Windows 7, 8, 8.1 (32- and 64-bit)
Mac OS X

Mac OS X 10.6 and above

Linux

Any recent Linux distribution with libstdc++ 6 (32- and 64-bit)

2 | mportant
The calling convention used in the functions exported by the shared TeamSpeak 3 SDK libariesis cdecl. You

must not use another calling convention, like stdcall on Windows, when declaring function pointersto the Team-
Speak 3 SDK libraries. Otherwise stack corruption at runtime may occur.

Overview of header files

The following header files are deployed to SDK developers:

clientlib.h

Declares the function prototypes and callbacks for the communication between Client Lib and Client Ul. While the Client
Ul makes function calls into the Client Lib using the declared prototypes, the Client Lib calls the Client Ul via callbacks.

clientlib_publicdefinitions.h

Defines various enums and structs used by the Client Ul and Client Lib. These definitions are used by the functions and
calbacksdeclaredinclientlib. h

public _definitions.h
Defines various enums and structs used by both client- and server-side.

public_sdk _definitions.h

TeamSpeak 3 Client
SDK Developer Manual

Enum definitions for filetransfer support.
e public_errors.h

Definesthe error codes returned by every Client Lib function and onSer ver Er r or Event . Error codes are organized in
several groups. Thefirst byte of the error code defines the error group, the second the count within the group.

Calling Client Lib functions

Client Lib functions follow a common pattern. They always return an error code or ERROR _ok on success. If thereisaresult
variable, it is always the last variable in the functions parameters list.

ERROR ts3client FUNCNAME(argl, arg2, ..., &esult);

Result variables should only be accessed if the function returned ERROR_ok. Otherwise the state of the result variable is
undefined.

In those cases where the result variable is a basic type (int, float etc.), the memory for the result variable has to be declared
by the caller. Simply pass the address of the variable to the Client Lib function.

int result;

if(ts3client_XXX(argl, arg2, ..., &esult) == ERROR ok) {
/* Use result variable */

} else {

/* Handl e error, result variable is undefined */

}

If the result variable is a pointer type (C strings, arrays etc.), the memory is alocated by the Client Lib function. In that case,
the caller has to rel ease the allocated memory later by usingt s3cl i ent _f r eeMenory. It isimportant to only access and
release the memory if the function returned ERROR_ok. Should the function return an error, theresult variableisuninitialized,
so freeing or accessing it could crash the application.

char* result;

if(ts3client_XXX(argl, arg2, ..., &esult) == ERROR ok) {

/* Use result variable */

ts3client_freeMenory(result); /* Release result variable */
} else {

/* Handle error, result variable is undefined. Do not access or release it. */
}

§ Note
Client Lib functions are thread-safe. It is possible to access the Client Lib from several threads at the sametime.

Return code

Client Lib functions that interact with the server take an additional parameter r et ur nCode, which can be used to find
out which action results in a later server error. If you pass a custom string as return code, the onSer ver Er r or Event
callback will receive the same custom string initsr et ur nCode parameter. If no error occured, onSer ver Er r or Event
will indicate success py passing the error code ERROR_ok.

Pass NULL asr et ur nCode if you do not need the feature. In this case, if no error occurs onSer ver Err or Event will
not be called.

TeamSpeak 3 Client
SDK Developer Manual

An example, request moving a client:
ts3client_requestCient Move(scHandl erl D, clientlD, newChannellD, password, "M/ ientMveReturnCode");

If an error occurs, theonSer ver Err or Event calback is called:

voi d ny_onServer Error Event (ui nt 64 server Connecti onHandl er1 D, const char* error Message,
unsigned int error, const char* returnCode, const char* extraMessage) {
if(strcmp(returnCode, "MyCientMveReturnCode")) == 0) {
/* We know this error is the reaction to above called function as we got the sane returnCode */
if(error == ERROR ok) {
/* Success */
}

}
Initializing
When starting the client, initialize the Client Lib with acall to

unsigned int ts3client_initdientLib(functionPointers, functionRarePointers, used-
LogTypes, | ogFil eFol der, resourcesFol der);

const struct dientU Functions* functionPointers;
const struct dientU Functi onsRare* functi onRarePoi nters;
i nt usedLogTypes;

const char* | ogFil eFol der;
const char* resourcesFol der;

e functionPointers
Callback function pointers. See below.
» functi onRarePoi nters
Unused by SDK, passNULL.
e usedLogTypes
Defines the log output types. The Client Lib can output log messages (called by t s3cl i ent _| ogMessage) to afile
(located inthe | ogs directory relative to the client executable), to stdout or to user defined callbacks. If user callbacks are

activated, theonUser Loggi ngMessageEvent event needs to be implemented.

Available values are defined by the enum LogTypes (see publ i c_defi ni ti ons. h):

enum LogTypes {

LogType_NONE = 0x0000,
LogType_FI LE = 0x0001,
LogType_CONSOLE = 0x0002,
LogType_USERLOGA NG = 0x0004,
LogType_NO NETLOGG NG = 0x0008,
LogType_DATABASE = 0x0010,

}s

Multiple log types can be combined with abinary OR. If only LogType_NONE is used, local logging is disabled.

5

TeamSpeak 3 Client
SDK Developer Manual

E Note
Logging to console can slow down the application on Windows. Hence we do not recommend to log to the
console on Windows other than in debug builds.

E Note
LogType NO NETLOGAE NG is no longer used. Previously this controlled if the Client Lib would send
warning, error and critical log entriesto awebserver for analysis. As netlogging does not occur anymore, this
flag has no effect anymore.

LogType DATABASE has no effect in the Client Lib, thisisonly used by the server.
e | ogFi | eFol der

If file logging is used, this defines the location where the logs are written to. Pass NULL for the default behaviour, which
istouse afolder called | ogs in the current working directory.

r esour cesFol der

Resource path pointing to the directory where the soundbackends folder is located. Required so your application finds the
sound backend shared libraries. This should usually point to the root or bin directory of your application, depending where
the soundbackends directory is located.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

E Note
This function must not be called more than once.

The callback mechanism

The communication from Client Lib to Client Ul takes place using callbacks. The Client Ul has to define a series of function
pointers using the struct ClientUIFunctions (seecl i ent | i b. h). These callbacks are used to forward any incoming server
actions to the Client Ul for further processing.

E Note
All the clientlib callbacks are asynchronous, except for the sound callbacks which allow to directly manipulate
the sound buffer.

A calback examplein C:

static void my_onConnect St at usChangeEvent _Cal | back(ui nt 64 server Connecti onHandl er| D,
int newstatus,
int errorNunber) {
/* | nplenmentation */

}

C++ developers can also use static member functions for the callbacks.

Beforecalingt s3cl i ent _initCientLib, createaninstance of struct ClientUlFunctions, initialize all function point-
erswith NULL and assign the structs function pointers to your callback functions:

TeamSpeak 3 Client
SDK Developer Manual

unsigned int error;

/* Create struct */
Cient U Functions cl U Funcs;

/* Initialize all function pointers with NULL */
menset (&cl U Funcs, 0, sizeof(struct dientU Functions));

/* Assign those function pointers you inplenmented */
cl Ul Funcs. onConnect St at usChangeEvent my_onConnect St at usChangeEvent _Cal | back;
cl Ul Funcs. onNewChannel Event my_onNewChannel Event _Cal | back;

()

/* Initialize client Iib with callback function pointers */
error = ts3client_initdientLib(&cl U Funcs, NULL, LogType_FILE | LogType_CONSOLE);
if(error = ERROR ok) {

printf("Error initializing clientlib: %l\n", error);

()

2 | mportant
Aslong asyouinitialize unimplemented callbackswith NULL, the Client Lib won't attempt to call those function
pointers. However, if you leave unimplemented callbacks undefined, the Client Lib will crash when trying to
calling them.

§ Note
All callbacks used in the SDK are found in the struct ClientUIFunctions (see publ i ¢_defi ni ti ons. h).
Callbacks bundled in the struct ClientUIFunctionsRare are not used by the SDK. These callbacks were split in
a separate structs to avoid polluting the SDK headers with code used only internally.

Querying the library version

The complete Client Lib version string can be queried with

unsigned int ts3client_getdientLi bVersion(result);

char** result;

e result

Address of avariable that receives the clientlib version string, encoded in UTF-8.

T Caution
The result string must bereleased usingt s3cl i ent _freeMenory. If an error has occured, the result string
is uninitialized and must not be released.

To get only the version number, which is a part of the complete version string, as numeric value:
unsi gned int ts3client_getdientLi bVersionNunber(result);

ui nt 64* result;

TeamSpeak 3 Client
SDK Developer Manual

e result
Address of avariable that receives the numeric clientlib version.

Both functions return ERROR_ok on success, otherwise an error code as defined inpubl i c_errors. h.

Anexampleusingt s3client _getd i entLi bVersion:

unsigned int error;

char* version;

error = ts3client_getdientLibVersion(&version);

if(error = ERROR ok) {
printf("Error querying clientlib version: %\n", error);
return;

printf("Cient library version: %\n", version); /* Print version */
ts3client_freeMenory(version); /* Release string */

Exampleusingt s3cl i ent _get Cl i ent Li bVer si onNunber :

unsigned int error;

ui nt 64 version;

error = ts3client_getCientlLibVersi onNunber (&version);

if(error !'= ERROR ok) {
printf("Error querying clientlib version nunber: %\ n", error);
return;

printf("Client library version nunber: %d\n", version); /* Print version */

Shutting down

Before exiting the client application, the Client Lib should be shut down with

unsi gned int ts3client_destroydientLib();

Returns ERROR_ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

Make sure to call this function after disconnecting from any TeamSpeak 3 servers. Any call to Client Lib functions after
shutting down has undefined results.

Managing server connection handlers

Before connecting to a TeamSpeak 3 server, anew server connection handler needs to be spawned. Each handler isidentified
by aunique ID (usualy called ser ver Connect i onHandl er | D). With one server connection handler a connection can
be established and dropped multiple times, so for simply reconnecting to the same or another server no new handler needs
to be spawned but existing ones can be reused. However, for using multiple connections simultaneously a new handler has
to be spawned for each connection.

To create a new server connection handler and receiveits D, call

unsi gned int ts3client_spawnNewServer Connecti onHandl er (port, result);

TeamSpeak 3 Client
SDK Developer Manual

int port;
ui nt 64* result;

s port

Port the client should bind on. Specify zero to let the operating system chose any free port. In most cases passing zero is
the best choice.

If port is specified, the function return value should be checked for ERROR unabl e_t o_bi nd_net wor k_port.
Handle this error by switching to an alternative port until a"free" port is hit and the function returns ERROR_ok .

A Caution

Do not specify anon-zero valuefor por t unlessyou absolutely need a specific port. Passing zero isthe better
way in most use cases.

e result
Address of avariable that receives the server connection handler ID.
To destroy a server connection handler, call
unsi gned int ts3client_destroyServer Connecti onHandl er (server Connecti onHandl er | D) ;

ui nt 64 server Connecti onHandl er | D;

e server Connecti onHandl er|I D
ID of the server connection handler to destroy.

Both functions return ERROR_ok on success, otherwise an error code asdefinedin publ i ¢_errors. h.

T | mportant

Destroying invalidates the handler 1D, so it must not be used anymore afterwards. Also do not destroy a server
connection handler ID from within a callback.

Connecting to a server

To connect to aserver, aclient application isrequired to request an identity from the Client Lib. This string should be requested
only once and then locally stored in the applications configuration. The next time the application connects to a server, the
identity should be read from the configuration and reused again.

unsigned int ts3client_createldentity(result);

char** result;

e result

TeamSpeak 3 Client
SDK Developer Manual

Address of avariable that receives the identity string, encoded in UTF-8.

Returns ERROR_ok on success, otherwise an error code as defined in publ i ¢_errors. h. If an error occured, the result
string is uninitialized and must not be accessed.

2 Caution
The result string must be released usingt s3cl i ent _freeMenory. If an error has occured, the result string
isuninitialized and must not be released.

Once a server connection handler has been spawned and an identity is available, connect to a TeamSpeak 3 server with

unsigned int ts3client_startConnection(serverConnectionHandlerl D, identity, ip,
port, nicknane, defaultChannel Array, defaultChannel Password, serverPassword);

ui nt 64 server Connecti onHandl er | D;
const char* identity;

const char* ip;

unsi gned int port;

const char* ni cknane;

const char** defaul t Channel Array;
const char* defaul t Channel Passwor d;
const char* serverPassword,;

* server Connecti onHandl erl D
Unique identifier for this server connection. Created witht s3cl i ent _spawnNewSer ver Connect i onHandl er
e identity

The clientsidentity. Thisstring hasto be created by callingt s3cl i ent _cr eat el denti t y. Please note an application
should create the identity only once, store the string locally and reuse it for future connections.

° | p
Hostname or |P of the TeamSpeak 3 server.

If you pass a hostname instead of an IP, the Client Lib will try to resolve it to an IP, but the function may block for an
unusually long period of time while resolving is taking place. If you are relying on the function to return quickly, we
recommend to resolve the hostname yourself (e.g. asynchronously) andthencall t s3cl i ent _st art Connect i on with
the IP instead of the hostname.

s port

UDP port of the TeamSpeak 3 server, by default 9987. TeamSpeak 3 uses UDP. Support for TCP might be added in the
future.

* ni cknane

Onlogin, the client attemptsto take this nickname on the connected server. Note thisis not necessarily the actually assigned
nickname, as the server can modifiy the nickname ("gandalf_1" instead the requested "gandalf") or refuse blocked names.

10

TeamSpeak 3 Client
SDK Developer Manual

o def aul t Channel Array

String array defining the path to a channel on the TeamSpeak 3 server. If the channel exists and the user has sufficient rights
and supplies the correct password if required, the channel will be joined on login.

To define the path to a subchannel of arbitrary level, create an array of channel names detailing the position of the default

channel (e.g. "grandparent”, "parent", "

mydefault”, ""). The array isterminated with a empty string.
Pass NULL to join the servers default channel.
» def aul t Channel Passwor d
Password for the default channel. Pass an empty string if no password is required or no default channel is specified.
* server Password
Password for the server. Pass an empty string if the server does not require a password.
All strings need to be encoded in UTF-8 format.

Returns ERROR _ok on success, otherwise an error code asdefined in publ i ¢c_er r or s. h. When trying to connect with an
invalid identity, the Client Lib will set the error ERROR cl i ent _coul d_not _val i date_i dentity.

Example code to request a connection to a TeamSpeak 3 server:

unsigned int error;
ui nt 64 scHandl er| D;
char* identity;

error = ts3client_spawnNewSer ver Connecti onHandl er (&scHandl er | D) ;
if(error = ERROR 0ok) {
printf("Error spawni ng server conection handler: %\ n", error);
return;

}

error = ts3client_createldentity(& dentity); /* Application should store and reuse the identity */
if(error = ERROR 0ok) {

printf("Error creating identity: %l\n", error);

return;

}

error = ts3client_startConnection(scHandl erl D,
identity
"my-teanspeak-server. coni,
9987,
"Gandal f",
NULL, /1 Join servers default channel
"y /1 Enmpty default channel password
"secret"); // Server password
if(error = ERROR 0ok) {
(..
}

ts3client_freeMenory(identity); /* Don't need this anynore */

Aftercalingt s3cl i ent _st art Connect i on, theclient will beinformed of the connection status changes by the callback
voi d onConnect St at usChangeEvent (server Connecti onHandl er I D, newSt at us, error Nunber);

ui nt 64 server Connecti onHandl er | D

11

TeamSpeak 3 Client
SDK Developer Manual

i nt newSt at us;
i nt errorNunber;
e newst at us

The new connect state as defined by the enum ConnectStatus:

enum Connect St at us {

STATUS_DI SCONNECTED = 0, //There is no activity to the server, this is the default value

STATUS_CONNECTI NG //We are trying to connect, we haven't got a clientlD yet, we
/'l haven't been accepted by the server

STATUS_CONNECTED, /1 The server has accepted us, we can talk and hear and we got a

/lclientl D, but we don't have the channels and clients yet, we
/lcan get server infos (welcome nsg etc.)
STATUS_CONNECTI ON_ESTABLI SHI NG, / / we are CONNECTED and we are visible
STATUS_CONNECTI ON_ESTABLI SHED, //we are CONNECTED and we have the client and channel s avail abl e
s
e error Number
Should be ERROR _ok (zero) when connecting

While connecting, the states will switch through the values STATUS_CONNECTI NG, STATUS_CONNECTED and
STATUS_CONNECTI ON_ESTABLI SHED. Once the state STATUS_CONNECTED has been reached, there the server wel-
come message is available, which can be queried by the client:

* Welcome message

Query the server variable VI RTUALSERVER WELCOVEMESSAGE for the message text using the function
ts3client_getServerVariabl eAsString:

char* wel coneMsg;
i f(ts3client_getServerVariabl eAsString(serverConnecti onHandl erl D, VI RTUALSERVER WELCOVEMESSAGE, &wel coneMsg)
I = ERROR_ok) {
printf("Error getting server wel come nessage: %\n", error);
return;

print ("Wl cone message: %\n", welconeMsg); [/* Display nessage */
ts3client_freeMenory(wel coneMsg); /* Rel ease nenory */

To check if aconnection to a given server connection handler is established, call:
unsi gned int ts3client_getConnectionStatus(server ConnectionHandl erl D, result);

ui nt 64 server Connecti onHandl er | D;
int* result;

e server Connecti onHandl er| D
ID of the server connection handler of which the connection state is checked.
e result

Address of avariable that receives the result: 1 - Connected, O - Not connected.

12

TeamSpeak 3 Client
SDK Developer Manual

Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

After the state STATUS _CONNECTED has been reached, the client is assigned an I D which identifies the client on this server.
This D can be queried with

unsigned int ts3client_getCientlD(serverConnectionHandlerID, result);

ui nt 64 server Connecti onHandl er | D
anyl D* result;

» server ConnectionHandl er| D

ID of the server connection handler on which we are querying the own client ID.
* result

Address of avariable that receivesthe client ID. Client IDs start with the value 1.

Returns ERROR _ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

After connection has been established, all current channels on the server are announced to the client. This happenswith delays
to avoid aflood of information after connecting. The client isinformed about the existance of each channel with the following
event:

voi d onNewChannel Event (server Connecti onHandl er1 D, channel I D, channel Parentl|D);

ui nt 64 server Connecti onHandl er | D;
ui nt 64 channel | D;
ui nt 64 channel Par ent | D;

* server Connecti onHandl erl D
The server connection handler ID.

* channel I D
The ID of the announced channel.

* channel Parent 1D
ID of the parent channel.

Channel |Ds start with the value 1.

The order in which channels are announced by onNewChannel Event isdefined by the channel order as explained in the
chapter Channel sorting.

All clients currently logged to the server are announced after connecting with the callback onCl i ent MoveEvent .

13

TeamSpeak 3 Client
SDK Developer Manual

Disconnecting from a server

To disconnect from a TeamSpeak 3 server call
unsi gned int ts3client_stopConnection(serverConnectionHandl erl D, quitMessage);

ui nt 64 server Connecti onHandl er | D;
const char* quitMessage;

* server Connecti onHandl erl D

The unique ID for this server connection handler.
e qui t Message

A message like for example "leaving". The string needs to be encoded in UTF-8 format.
Returns ERROR _ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

Like with connecting, on successful disconnecting the client will receive an event:

voi d onConnect St at usChangeEvent (server Connecti onHandl er I D, newSt at us, error Nunber);

ui nt 64 server Connecti onHandl er | D;
i nt newSt at us;
i nt errorNunber;
* newst at us
Set to STATUS_DI SCONNECTED as defined by the enum ConnectStatus.
e error Nunber

error Nunber isexpected to be ERROR ok asresponseto calingt s3cl i ent _st opConnecti on.

Vaues other than ERROR ok occur when the connection has been lost for reasons not initiated by the user, e.g. network
error, forcefully disconnected etc.

Should the server be shutdown, the follow event will be called:

voi d onServer St opEvent (server Connecti onHandl er I D, shut downMessage) ;
ui nt 64 server Connecti onHandl er | D;

const char* shut dowmnMessage;

e server Connecti onHandl er|I D

Server connection handler 1D of the stopped server.

14

TeamSpeak 3 Client
SDK Developer Manual

e shut downMessage

M essage announcing the reason for the shutdown sent by the server. Has to be encoded in UTF-8 format.

Error handling

Each Client Lib function returns either ERROR_ok on success or an error value as defined in publ i ¢_errors. h if the
function fails.

Thereturned error codes are organized in groups, where the first byte defines the error group and the second the count within
the group: The naming convention is ERROR_<group>_<error>, for example ERROR cl i ent _i nval i d_i d.

Example:

unsigned int error;
char* wel coneMsg;

error = ts3client_getServerVariabl eAsString(serverConnecti onHandl erl D,
VI RTUALSERVER_WEL COVEMESSACE,
&nel comeMsg) ;
if(error == ERROR ok) {
/* Use wel coneMsg. .. */
ts3client_freeMenory(wel conreMsg); /* Release nenory *only* if function did not return an error */
} else {
/* Handle error */
/* Do not access or release wel coneMessage, the variable is undefined */

f | mportant

Client Libfunctionsreturning C-stringsor arraysdynamically allocate memory which hasto befreed by thecaller
usingt s3cl i ent _f r eeMenor y. Itisimportant to only accessand rel ease thememory if thefunction returned
ERRCR_ok. Should the function return an error, the result variable is uninitialized, so freeing or accessing it
could crash the application.

See the section Calling Client Lib functions for additional notes and examples.

A printable error string for a specific error code can be queried with
unsi gned int ts3client_getErrorMssage(errorCode, error);

unsi gned int errorCode;
char** error;

e error Code
The error code returned from all Client Lib functions.
e error

Addressof avariablethat receivesthe error message string, encoded in UTF-8 format. Unlessthereturn value of thefunction
isnot ERROR_ok, the string should bereleased witht s3cl i ent _freeMenory.

15

TeamSpeak 3 Client
SDK Developer Manual

Example:

unsigned int error;
anyl D nyl D,

error = ts3client_getClientlD(scHandlerlD, &wylD); /* Calling some Client Lib function */
if(error !'= ERROR ok) {
char* errorMsg;
if(ts3client_getErrorMessage(error, &errorMg) == ERROR ok) { /* Query printable error */
printf("Error querying client ID %\n", errorMsgQ);
ts3client_freeMenory(errorMsg); /* Release nmenory */

In addition to actively querying errors like above, error codes can be sent by the server to the client. In that case the following
event iscalled:

voi d onServer Error Event (server Connecti onHandl er| D, errorMessage, error, returnCode,
ext raMessage) ;

ui nt 64 server Connecti onHandl er | D;
const char* errorMessage;
unsi gned int error;
const char* returnCode;
const char* extraMessage;
» server Connecti onHandl er| D
The connection handler ID of the server who sent the error event.
e errorMessage
String containing a verbose error message, encoded in UTF-8 format.
e error
Error code asdefined in publ i c_errors. h.
* returnCode
String containing the return code if it has been set by the Client Lib function call which caused this error event.
See return code documentation.

e extraMessage

Can contain additional information about the occured error. If no additional information is available, this parameter is an
empty string.

Logging
The TeamSpeak 3 Client Lib offers basic logging functions:

unsi gned int ts3client_ | ogMessage(l ogMessage, severity, channel, |oglD);

16

TeamSpeak 3 Client
SDK Developer Manual

const char* | ogMessage;
LogLevel severity;
const char* channel;

ui nt 64 | ogl D

e | ogMessage
Text written to log.
e severity

The level of the message, warning or error. Defined by theenum LogLevel incl i ent i b_publi cdefinitions. h:

enum LoglLevel {
LogLevel _CRITICAL = 0, //these nessages stop the program

LogLevel _ERROR, /leverything that is really bad, but not so bad we need to shut down
LogLevel _WARNI NG, /1 everything that *m ght* be bad
LogLevel _DEBUG, //output that mght help find a problem
LogLevel _I NFQ, /linformational output, like "starting database version x.y.z"
LogLevel _DEVEL // devel oper only output (will not be displayed in rel ease node)
}s
e channel

Custom text to categorize the message channel (i.e. "Client", "Sound").
Pass an empty string if unused.
 logl D
Server connection handler 1D to identify the current server connection when using multiple connections.
Pass 0 if unused.
All strings need to be encoded in UTF-8 format.
Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

Log messages can be printed to stdout, logged to afilel ogs/ts3client [date] __[tinme]. | og and sentto user-de-
fined callbacks. Thelog output behaviour is defined wheninitialzing the client library witht s3cl i ent _initCl i ent Li b.

Unless user-defined logging is used, program execution will halt on alog message with severity LogLevel _CRI Tl CAL.

User-defined logging

If user-defined logging was enabled when initialzing the Client Lib by passing LogType_USERLOGG NGtotheusedLog-
Types parameter of t s3client _initdientLib,logmessageswill be sent to the following callback, which allows
user customizable logging and handling or critical errors:

voi d onUser Loggi ngMessageEvent (|1 ogMessage, | oglLevel, | ogChannel, |1 ogl D, | ogTi ne, com
pl et eLogString);

const char* | ogMessage;
int |oglLevel;

17

TeamSpeak 3 Client
SDK Developer Manual

const char* | ogChannel ;

ui nt 64 | ogl D

const char* | ogTi ne;

const char* conpl etelLogStri ng;

Most callback parameters reflect the arguments passed to the| ogMessage function.
* | ogMessage

Actua log message text.
* | ogLevel

Severity of log message, defined by the enum LogL evel. Note that only log messages of alevel higher than the one config-
ured witht s3cl i ent _set LogVer bosi t y will appear.

* | ogChannel
Optional custom text to categorize the message channel.
 logl D
Server connection handler 1D identifying the current server connection when using multiple connections.
* | ogTi ne
String with date and time when the log message occured.
e conpl eteLogString

Provides a verbose log message including all previous parameters for convinience.

The severity of log messages that are passed to above callback can be configured with:
unsi gned int ts3client_setlLogVerbosity(l ogVerbosity);

enum LogLevel | ogVerbosity;

e logVerhosity

Only messages with alog level equal or higher than | ogVer bosi ty will be sent to the callback. The default value is
LogLevel _DEVEL.

For example, after calling
ts3client_setLogVerbosity(LogLevel _ERROR);

only log messages of level LogLevel _ERRORand LogLevel _CRI TI CAL will be passed to onUser Loggi ngMes-
sageEvent.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

18

TeamSpeak 3 Client
SDK Developer Manual

Using playback and capture modes and devices

TheClient Lib takes care of initializing, using and rel easing sound playback and capture devices. Accessing devicesis handled
by the sound backend shared libraries, found in the soundbackends directory in the SDK. Therearedifferent backendsavailable
on the supported operating systems: DirectSound and Windows Audio Session APl on Windows, Alsa and PulseAudio on
Linux, CoreAudio on Mac OS X.

All strings passed to and from the Client Lib have to be encoded in UTF-8 format.

Initializing modes and devices

To initialize a playback and capture device for a TeamSpeak 3 server connection handler, call

unsigned int ts3client_openPl aybackDevi ce(server Connecti onHandl erI D, nodel D, play-
backDevi ce) ;

ui nt 64 server Connecti onHandl er | D

const char* nodel D,
const char* pl aybackDevi ce;

» server Connecti onHandl er| D
Connection handler of the server on which you want to initialize the playback device.
* nodel D

The playback mode to use. Valid modes are returned by ts3client get Defaul t Pl ayBackMbde and
ts3client _get Pl aybackModeli st .

Passing an empty string will use the default playback mode.
* pl aybackDevi ce
Valid parameters are:

» Thedevi ce parameter returned by t s3cl i ent _get Def aul t Pl aybackDevi ce

One of thedevi ce parametersreturned by t s3cl i ent _get Pl aybackDevi celLi st
» Empty string to initialize the default playback device.

* Linux with Alsa only: Custom device namein the form of e.g. “hw:1,0".
The string needs to be encoded in UTF-8 format.

Returns ERROR_ok on success, otherwise an error code as defined in public_errors. h. A likely error is
ERROR _sound_coul d_not _open_pl ayback_devi ce if the sound backend fails to find a usable playback device.

unsi gned i nt ts3client_openCaptureDevi ce(server Connecti onHandl erl D, nodel D, capt ure-
Devi ce);

19

TeamSpeak 3 Client
SDK Developer Manual

ui nt 64 server Connecti onHandl er | D;
const char* nodel D,
const char* captureDevi ce;
e server Connecti onHandl er|I D
Connection handler of the server on which you want to initialize the capture device.

e nodel D

The capture mode to use. Vaid modes are returned by ts3client_get Def aul t Capt ureMbde and
ts3cl i ent _get Capt ur eMbdeli st.

Passing an empty string will use the default capture mode.
e captureDevice
Valid parameters are:
e Thedevi ce parameter returned by t s3cl i ent _get Def aul t Capt ur eDevi ce
* Oneof thedevi ce parametersreturned by t s3cl i ent _get Capt ur eDevi celLi st
» Empty string to initialize the default capture device. Encoded in UTF-8 format.
 Linux with Alsa only: Custom device namein the form of e.g. “hw:1,0".

Returns ERROR_ok on success, otherwise an error code as defined in public_errors.h. Like
ly errors are ERROR sound_coul d_not _open_capture_device if the device fails to open or
ERRCR_sound_handl er _has_devi ce if the device is aready opened. To avoid this problem, it is recommended to
close the capture device before opening it again.

Querying available modes and devices

Various playback and capture modes are available: DirectSound on all Windows platforms, Windows Audio Session APl for
Windows Vista and Windows 7; Alsaand PulseAudio on Linux; CoreAudio on Mac OS X.

Available device names may differ depending on the current mode.
The default playback and capture modes can be queried with:
unsi gned int ts3client_getDefaultPlayBackMbde(result);

char** result;

unsi gned int ts3client_getDefaultCaptureMde(result);

char** result;

e result

20

TeamSpeak 3 Client
SDK Developer Manual

Address of a variable that receives the default playback or capture mode. The value can be used as parameter for
the functions querying and opening devices. Unless the function returns an error, the string must be released using
ts3client_freeMenory.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

All available playback and capture modes can be queried with:
unsi gned int ts3client_getPl aybackModelList(result);

char*** result;

unsi gned int ts3client_getCapturehMdelist(result);

char*** result;

e result
Address of avariable that receives a NULL-terminated array of C-strings listing available playback or capture modes.

Unlessthefunction returns an error, the caller must rel ease each element of the array (the C-string) and finally the compl ete
array witht s3cl i ent _f reeMenory.

Returns ERROR_ok on success, otherwise an error code as defined in publ i ¢_errors. h. In case of an error, the result
array is uninitialized and must not be accessed or rel eased.

Example to query all available playback modes:
char** array;

if(ts3client_getPl aybackMbdeli st (&array) == ERROR ok) {
for(int i=0; array[i] != NULL; ++i) {
printf("Mde: %\n", array[i]);
ts3client_freeMenory(array[i]); // Free Cstring

}

ts3client_freeMenory(array); // Free the array

Playback and capture devices available for the given mode can be listed, as well as the current operating systems default. The
returned device values can be used to initialize the devices.

To query the default playback and capture device, call
unsi gned int ts3client_getDefaultPlaybackDevice(nodel D, result);

const char* nodel D
char*** result;

21

TeamSpeak 3 Client
SDK Developer Manual

unsi gned int ts3client getDefaultCapturebDevice(nodel D, result);

const char* nodel D
char*** result;

* node

Defines the playback/capture mode to use. For different modes there might be different default devices. Valid
modesarereturned byt s3cl i ent _get Def aul t Pl ayBackMode/t s3cl i ent _get Def aul t Capt ur eMbde and

ts3client_get Pl aybackModelLi st /ts3client _get Capt ureModelLi st .

e result

Address of avariable that receives an array of two C-strings. The first element contains the device name, the second the

devicelD.

Unless the function returns an error, the caller must free the two array elements and the complete array with

ts3client _freeMenory.

Returns ERROR_ok on success, otherwise an error code as defined in publ i c_errors. h. In case of an error, the result

array is uninitialized and must not be released.

Example to query the default playback device:

char* defaul t Mode;

/* Get default playback node */

if(ts3client_getDefaultPl ayBackMode(&def aul t Mode) == ERROR ok) {
char** def aul t Pl aybackDevi ce;

/* Get default playback device */
if(ts3client_getDefaultPlaybackDevi ce(def aul t Mode, &defaul t Pl aybackDevi ce)

printf("Default playback device name: %\n", defaultPlaybackDevice[O0]);
printf("Default playback device ID: %\n", def aul t Pl aybackDevi ce[1]);

/* Release the two array elenents and the array */
ts3client_freeMenory(defaul t Pl aybackDevice[0]);
ts3client_freeMenory(defaul t Pl aybackDevice[1]);
ts3client_freeMenory(defaul t Pl aybackDevice);

} else {
printf("Failed to get default playback device\n");

} else {
printf("Failed to get default playback node\n");

To get alist of all available playback and capture devices for the specified mode, call
unsi gned int ts3client _getPlaybackDevi celLi st (nodel D, result);

const char* nodel D
char**** result;

/*
/*

== ERROR ok) {

First el enment:

Second el enent :

Devi ce nane */
Device ID */

22

TeamSpeak 3 Client
SDK Developer Manual

unsi gned int ts3client_getCaptureDevicelist(nodelD, result);

const char* nodel D
char**** result;

e nodel D

Defines the playback/capture mode to use. For different modes there might be different device lists. Valid modes
are returned by ts3client_get Def aul t Pl ayBackMode / ts3client _get Def aul t Capt ur eMbde and
ts3client _get Pl aybackMbdeli st /t s3cl i ent_get Capt ur eMbdeli st.

e result

Address of avariablethat receivesaNULL-terminated array { { char* deviceName, char* devicelD }, { char* deviceName,
char* devicelD }, ..., NULL }.

Unless the function returns an error, the elements of the array and the array itself need to be freed using
ts3client _freeMenory.

Returns ERROR_ok on success, otherwise an error code as defined in publ i c_errors. h. In case of an error, the result
array is uninitialized and must not be released.

Example to query all available playback devices:
char* defaul t Mode;

if(ts3client_getDefaul t Pl ayBackMode(&def aul t Mode) == ERROR 0k) {
char*** array;

if(ts3client_getPlaybackDevi celLi st (defaul t Mode, &array) == ERROR ok) {
for(int i=0; array[i] != NULL; ++i) {
printf("Playback device name: %\n", array[i][0]); /* First elenent: Device name */
printf("Playback device ID %\n", array[i][1]); /* Second elenent: Device ID */

/* Free elenent */

ts3client_freeMenory(array[i][
ts3client_freeMenory(array[i][
ts3client_freeMenory(array[i])

0]);
_1]);

}

ts3client_freeMenory(array); /* Free conplete array */
} else {
printf("Error getting playback device list\n");

} else {
printf("Error getting default playback node\n");
}

Checking current modes and devices

The currently used playback and capture modes for a given server connection handler can be checked with:
unsi gned int ts3client_getCurrentPl ayBackMode(server ConnectionHandl erI D, result);

ui nt 64 server Connecti onHandl er | D;
char** result;

23

TeamSpeak 3 Client
SDK Developer Manual

unsi gned int ts3client_getCurrent Capt ureMde(server Connecti onHandl erI D, result);

ui nt 64 server Connecti onHandl er | D;
char** result;

» server Connecti onHandl er| D
ID of the server connection handler for which the current playback or capture modes are queried.
* result

Address of a variable that receives the current playback or capture mode. Unless the function returns an error, the string
must bereleased usingt s3cl i ent _freeMenory.

Returns ERROR _ok on success, otherwise an error code asdefined inpubl i ¢_errors. h.

Check the currently used playback and capture devices for a given server connection handler with:

unsigned int ts3client _getCurrentPl aybackDevi ceNane(server Connecti onHandl erI D, re-
sult, isDefault);

ui nt 64 server Connecti onHandl er | D;
char** result;
int* isDefault;

unsigned int ts3client_getCurrent CaptureDevi ceNane(server ConnectionHandl erl D, re-
sult, isDefault);

ui nt 64 server Connecti onHandl er | D

char** result;
int* isDefault;

e server Connecti onHandl er|I D
ID of the server connection handler for which the current playback or capture devices are queried.
e result

Address of a variable that receives the current playback or capture device. Unless the function returns an error, the string
must be released usingt s3cl i ent _freeMenory.

e result

Address of a variable that receives a flag if this device is the default playback/capture device. If this is not needed, pass
NULL instead.

24

TeamSpeak 3 Client
SDK Developer Manual

Returns ERROR _ok on success, otherwise an error code as defined in publ i c_errors. h. If an error has occured, the
result string is uninitialized and must not be rel eased.

Closing devices

To close the capture and playback devices for agiven server connection handler:
unsi gned int ts3client_cl oseCapturebDevi ce(server Connecti onHandl erl D) ;

ui nt 64 server Connecti onHandl er | D;

unsi gned int ts3client_cl osePl aybackDevi ce(server Connecti onHandl erl D);

ui nt 64 server Connecti onHandl er | D

» server Connecti onHandl er|I D
ID of the server connection handler for which the playback or capture device should be closed.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

ts3client_cl osePl aybackDevi ce will not block until al current sounds have finished playing but will shutdown
the device immediately, possibly interrupting the still playing sounds. To shutdown the playback device more gracefully, use
the following function:

unsigned int ts3client_initiateG aceful Pl aybackShut down(server Connecti onHandl erl D);

ui nt 64 server Connecti onHandl er | D

e server Connecti onHandl er|I D
ID of the server connection handler for which the playback or capture device should be shut down.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

Whilet s3client _initiateG aceful Pl aybackShut down will not block until all sounds have finished playing,
too, it will notify the client when the playback device can be safely closed by sending the callback:

voi d onPl aybackShut downConpl et eEvent (ser ver Connecti onHandl er I D) ;

ui nt 64 server Connecti onHandl er | D;

e server Connecti onHandl er1 D

25

TeamSpeak 3 Client
SDK Developer Manual

ID of the server connection handler on which the playback device has been shut down.

Example code to gracefully shutdown the playback devicef:

/* Instead of calling ts3client_closePl aybackDevice() directly */

if(ts3client_initiateG aceful Pl aybackShutdown(current ScHandl erl D) != ERROR ok) {
printf("Failed to initiate graceful playback shutdown\n");
return;

}

/* Event notifying the playback device has been shutdown */
voi d ny_onPl aybackShut downConpl et eEvent (ui nt 64 scHandl erl D) {
/* Now we can safely close the device */
if(ts3client_closePl aybackDevi ce(scHandl erlI D) != ERROR ok) {
printf("Error closing playback device\n");
}

§ Note
Devices are closed automatically when callingt s3cl i ent _dest r oySer ver Connect i onHandl er.

E Note
To change adevice, closeit first and then reopen it.

Using custom devices

Instead of opening existing sound devices that TeamSpeak has detected, you can aso use our custom capture and
playback mechanism to allow you to override the way in which TeamSpeak does capture and playback. When
you have opened a custom capture and playback device you must regularly supply new "captured" sound data
via the t s3cl i ent _processCust onCapt ur eDat a function and retrieve data that should be "played back" via
ts3client _acquireCust onPl aybackDat a. Where exactly this captured sound data comes from and where the play-
back data goesto is up to you, which allows alot of cool things to be done with this mechanism.

Implementing own custom devicesis for special use cases and entirely optional .

Registering a custom device announces the device ID and name to the Client Lib. Once a custom device has been regis-
tered under adevice ID, the device can be opened like any standard device witht s3cl i ent _openCapt ur eDevi ce and
ts3client _openPl aybackDevi ce.

void ts3client_registerCustonbDevi ce(devicel D, devi ceDi spl ayNane, capFr equency,
capChannel s, pl ayFrequency, playChannels);

const char* devicel D

const char* devi ceD spl ayNane;
i nt capFrequency;

i nt capChannel s;

i nt playFrequency;

i nt playChannel s;

« devicel D

ID string of the custom device, under which the device can be later accessed.

26

TeamSpeak 3 Client
SDK Developer Manual

» devi ceDi spl ayNane
Displayed name of the custom device. Freely choose a name which identifies your device.
e capFrequency
Frequency of the capture device.
e capChannel s
Number of channels of the capture device. Thisvalue depends on if the used codec is amono or stereo codec.
* pl ayFrequency
Frequency of the playback device.
e pl ayChannel s
Number of channels of the playback device.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

Unregistering a custom device will automatically close the device:
voi d ts3client _unregisterCustonDevi ce(devicel D);

const char* devicel D,

e devicel D

ID string of the custom device to unregister. This is the ID under which the device was registered with
ts3client _registerCustonbDevi ce.

Returns ERROR_ok on success, otherwise an error code asdefinedinpubl i ¢_errors. h.

To send the captured data from your device to the Client Lib:
voi d ts3client processCust onCapt ureDat a(devi cel D, buffer, sanples);

const char* devicel D,
const short* buffer;
i nt sanpl es;

e devicel D

ID string of the custom devicee This is the ID under which the device was registered with
ts3client _registerCustonbDevi ce.

e buffer

27

TeamSpeak 3 Client
SDK Developer Manual

Capture data buffer containing the data captured by the custom device.
e sanpl es
Size of the capture data buffer.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

Retrieve playback data from the Client Lib:
voi d ts3client_acquireCustonPl aybackDat a(devi cel D, buffer, sanples);

const char* devicel D,
const short* buffer;
i nt sanpl es;

* devicel D

ID string of the custom devicee This is the ID under which the device was registered with
ts3client _registerCustonbDevice.

* buffer

Buffer containing the playback data retrieved from the Client Lib.
* sanpl es

Size of the playback data buffer.

Returns ERROR_ok if playback datais available or ERROR _sound_no_dat a if the Client Lib currently has no playback
data

Thereturnvalue ERROR_sound_no_dat a can beused for performance optimisation, it meansthereiscurrently only silence
(nobody istalking, no wavefiles being played etc.) and instead of returning abuffer full of zeroesit just notifiesthe user there
is currently no data, which allows you to not playback any sound data for that moment, if your API supports that (potentially
saving some CPU), or to just fill the sound buffer with zeroes and playback thisif your sound APl demands you to fill it with
something for every given time.

Overview on registering and opening a custom device;

/* Register a new custom sound device with specified frequency and nunber of channels */

if(ts3client_registerCustonDevi ce("customMveDevi celd", "N ce di spl ayabl e wave devi ce nane", captureFrequency,
printf("Failed to register customdevice\n");

}

/* Open capture device we created earlier */

if(ts3client_openCaptureDevice(scHandl erl D, "custoni, "customAveDeviceld") != ERROR ok) {
printf("Error opening capture device\n");

}

/* Open pl ayback device we created earlier */

i f(ts3client_openPl aybackDevi ce(scHandl erl D, "custoni, "customAveDeviceld") != ERROR ok) {

printf("Error opening playback device\n");

28

capt

TeamSpeak 3 Client
SDK Developer Manual

}

/* Main | oop */
whi | e(!abort) {
/* Fill captureBuffer fromyour custom device */

/* Streamyour capture data to the client lib */
if(ts3client_processCustonCapturebData("customMveDevi cel d*, captureBuffer, captureBufferSize) != ERROR ok) {
printf("Failed to process capture data\n");
}

/* Get playback data fromthe client lib */
error = ts3client_acquireCustonPl aybackDat a("cust omMaveDevi cel d", pl aybackBuffer, playbackBufferSize);
if(error == ERROR 0k) {
/* Playback data avail abl e, send pl aybackBuffer to your custom device */
} else if(error == ERROR sound_no_data) {
/* Not an error. The client Iib has no playback data avail abl e. Depending on your custom sound API, either
pause pl ayback for performance optimisation or send a buffer of zeros. */
} else {
printf("Failed to get playback data\n"); /* Error occured */
}
}

/* Unregister the customdevice. This automatically close the device. */

if(ts3client_unregisterCustonmDevi ce("custonmaveDeviceld') != ERROR ok) {
printf("Failed to unregister customdevice\n");

}

E Note
Further sample code on how to use a custom device can befound in the“ client_customdevice” exampleincluded
in the SDK.

Activating the capture device

E Note
Using this function is only required when connecting to multiple servers.

When connecting to multiple servers with the same client, the capture device can only be active for one server at the same
time. As soon as the client connectsto anew server, the Client Lib will deactivate the capture device of the previously active
server. When a user wantsto talk to that previous server again, the client needs to reactivate the capture device.

unsi gned int ts3client_activateCaptureDevice(serverConnecti onHandl erl D);

ui nt 64 server Connecti onHandl er | D

* server Connecti onHandl erl D

ID of the server connection handler on which the capture device should be activated.
Returns ERROR_ok on success, otherwise an error code asdefined in publ i ¢_errors. h.
If the capture device is already active, this function has no effect.

Opening a new capture device will automatically activate it, so calling this function is only necessary with multiple server
connections and when reactivating a previously deactivated device.

29

TeamSpeak 3 Client
SDK Developer Manual

If the capture device for a given server connection handler has been deactivated by the Client
Lib, the flag CLI ENT_I NPUT_HARDWARE will be set. This can be queried with the function
ts3client_getdientSel fVariabl eAsl nt.

Sound codecs

TeamSpeak 3 supports the following sound sampling rates:
» Speex Narrowband (8 kHz)

* Speex Wideband (16 kHz)

* Speex Ultra-Wideband (32 kHz)

» Celt (Mono, 48kHz)

* Opus Voice (Mono, 48khz)

* OpusMusic (Stereo, 48khz)

E Note
Opus Voiceis recommended for voice transmission. Speex and Celt codecs may be removed in future versions
of this SDK.

Bandwidth usage generally depends on the used codec and the encoders quality setting.

Estimated bitrates (bps) for codecs per quality:

Quality Narrowband Wideband Ultra-Wide- Celt OpusVoice OpusMusic
band

0 2,150 3,950 4,150 32,000 4,096 7,200

1 3,950 5,750 7,550 32,000 8,192 14,400
2 5,950 7,750 9,550 40,000 12,288 21,600
3 8,000 9,800 11,600 40,000 16,384 28,800
4 8,000 12,800 14,600 40,000 20,480 36,000
5 11,000 16,800 18,600 48,000 24,576 43,200
6 11,000 20,600 22,400 48,000 28,672 50,400
7 15,000 23,800 25,600 48,000 32,768 57,600
8 15,000 27,800 29,600 48,000 36,864 64,800
9 18,200 34,400 36,200 64,000 40,960 72,000
10 24,600 42,400 44,200 96,000 45,056 79,200

Change the quality to find a good middle between voice quality and bandwidth usage. Overall the Opus codec delivers the
best quality per used bandwidth.

30

TeamSpeak 3 Client
SDK Developer Manual

Users need to use the same codec when talking to each others. The smallest unit of participants using the same codec isachan-
nel. Different channels on the same TeamSpeak 3 server can use different codecs. The channel codec should be customizable
by the usersto alow for flexibility concerning bandwidth vs. quality concerns.

The codec can be set or changed for a given channel using the functiont s3cl i ent _set Channel Vari abl eAsl nt by
passing CHANNEL _ CODEC for the properties flag:

t s3cl i ent _set Channel Vari abl eAsl nt (scHandl er1 D, channel | D, CHANNEL_CODEC, codec);
Available values for CHANNEL CODEC are:
* 0 - Speex Narrowband)

» 1 - Speex Wideband

2 - Speex Ultra-Wideband

3- Cdt
» 4-0OpusVoice
e 5-OpusMusic

For details on using the functiont s3cl i ent _set Channel Vari abl eAsl nt see the appropriate section on changing
channel data.

Encoder options

Speech quality and bandwidth usage depend on the used Speex encoder. As Speex is a lossy code, the quality value
controls the balance between voice quality and network traffic. Valid quality values range from 0 to 10, default is 7.
The encoding quality can be configured for each channel using the CHANNEL CODEC QUALI TY property. The cur-
rently used channel codec, codec quality and estimated average used bitrate (without overhead) can be queried with
ts3client _get EncodeConfi gVal ue.

E Note
Encoder options are tied to a capture device, so querying the values only makes sense after a device has been
opened.

All strings passed from the Client Lib are encoded in UTF-8 format.

unsigned int ts3client_get EncodeConfi gVal ue(serverConnectionHandl erl D, ident, re-
sult);

ui nt 64 server Connecti onHandl er | D
const char* ident;

char** result;

* server Connecti onHandl er1 D

Server connection handler ID

e jident

31

TeamSpeak 3 Client
SDK Developer Manual

String containing the queried encoder option. Available values are “name”, “quality” and “bitrate’.
* result

Address of a variable that receives the result string. Unless an error occured, the result string must be released using
ts3client _freeMenory.

Returns ERROR _ok on success, otherwise an error code as defined in publ i c_errors. h. If an error has occured, the
result string is uninitialized and must not be rel eased.

To adjust the channel codec quality to avalue of 5, you would call:

ts3cl i ent _set Channel Vari abl eAsl nt (scHandl erI D, channel | D, CHANNEL_CCODEC_QUALI TY, 5);
See the chapter about channel information for details about how to set channel variables.

To query information about the current channel quality, do:

char *name, *quality, *bitrate;

ts3cl i ent _get EncodeConfi gVal ue(scHandl erI D, "nanme", &nane);

ts3cli ent _get EncodeConfi gVal ue(scHandl erI D, "quality", &quality);

ts3cli ent _get EncodeConfi gVal ue(scHandl erI D, "bitrate", &bitrate);
printf("Name = %, quality = %, bitrate = %\n", nanme, quality, bitrate);
ts3client_freeMenory(nane);

ts3client_freeMenory(quality);
ts3client_freeMenory(bitrate);

Preprocessor options

Sound input is preprocessed by the Client Lib before the datais encoded and sent to the TeamSpeak 3 server. The preprocessor
is responsible for noise suppression, automatic gain control (AGC) and voice activity detection (VAD).

The preprocessor can be controlled by setting various preprocessor flags. These flags are unique to each server connection.

E Note
Preprocessor flags are tied to a capture device, so changing the values only makes sense after a device has been
opened.

Preprocessor flags can be queried using

unsi gned int ts3client_getPreProcessor ConfigVal ue(server Connecti onHandl erl D, ident,
result);

ui nt 64 server Connecti onHandl er | D

const char* ident;
char** result;

» server Connecti onHandl er1 D

The server connection handler ID.

32

TeamSpeak 3 Client
SDK Developer Manual

e i dent

The proprocessor flag to be queried. The following keys are available:

“name”

Type of the used preprocessor. Currently this returns a constant string “ Speex preprocessor”.
“denoise”

Check if noise suppression is enabled. Returns “true” or “false”.

“vad”

Check if Voice Activity Detection is enabled. Returns “true’ or “false”.

“voiceactivation level”

Checks the Voice Activity Detection level in decibel. Returns a string with a numeric value, convert thisto an integer.
“vad_extrabuffersize’

Checks Voice Activity Detection extrabuffer size. Returns a string with a numeric value.
“agc”

Check if Automatic Gain Control is enabled. Returns “true” or “false”.

“agc_level”

Checks AGC level. Returns a string with anumeric value.

“agc_max_gain”

Checks AGC max gain. Returns a string with a numeric value.

“echo_canceling”

Checksif echo canceling is enabled. Returns a string with a boolean value.

e result

Address of a variable that receives the result as a string encoded in UTF-8 format. If no error occured the returned string
must bereleased usingt s3cl i ent _freeMenory.

Returns ERROR _ok on success, otherwise an error code as defined in publ i c_errors. h. If an error has occured, the
result string is uninitialized and must not be rel eased.

To configure the proprocessor use

unsi gned int ts3client_setPreProcessorConfigVal ue(server Connecti onHandl erl D, ident,
val ue) ;

ui nt 64 server Connecti onHandl er | D;
const char* ident;

33

TeamSpeak 3 Client
SDK Developer Manual

const char* val ue;

» server ConnectionHandl er| D
The server connection handler ID.
« ident
The preprocessor flag to be configure. The following keys can be changed:
* “denoise”
Enable or disable noise suppression. Value can be “true” or “false”. Enabled by default.
o “vad”
Enable or disable VVoice Activity Detection. Value can be “true” or “false”. Enabled by default.
» “voiceactivation level”

Voice Activity Detection level in decibel. Numeric value converted to string. A high voice activation level means you
have to speak louder into the microphone in order to start transmitting.

Reasonable values range from -50 to 50. Default is 0.

To adjust the VAD level inyour client, you cancal t s3cl i ent _get PrePr ocessor | nf oVal ueFl oat withthe
identifier “decibel_last_period” over aperiod of time to query the current voice input level.

» “vad_extrabuffersize”

VoiceActivity Detection extrabuffer size. Numeric value converted to string. Should be“0” to“8”, defaultsto“2". Lower
value means faster transmission, higher value means better VAD quality but higher latency.

“ Ul

. “agc
Enable or disable Automatic Gain Control. Vaue can be “true” or “false”. Enabled by default.
* “agc level”
AGC level. Numeric value converted to string. Default is“16000”.
e “agc_max_gain”
AGC max gain. Numeric value converted to string. Default is“30”.
» “echo_canceling”
Enable echo canceling. Boolean value converted to string. Default is“false”.
* val ue
String value to be set for the given preprocessor identifier. In case of on/off switches, use “true”’ or “false”.

Returns ERROR_ok on success, otherwise an error code as defined in publ i ¢_errors. h.

34

TeamSpeak 3 Client
SDK Developer Manual

E Note
Itis not necessary to change all those values. The default values are reasonable. “voiceactivation_level” isoften
the only value that needs to be adjusted.

The following function retrieves preprocessor information as a floating-point variable instead of a string:

unsi gned i nt ts3client _get PreProcessorl| nfoVal ueFl oat (server Connecti onHandl er | D,
ident, result);

ui nt 64 server Connecti onHandl er | D;
const char* ident;
float* result;

e server Connecti onHandl er| D
The server connection handler I1D.
* jdent

The proprocessor flag to be queried. Currently the only valid identifier for thisfunction is“decibel_last_period”, which can
be used to adjust the VAD level as described above.

e result
Address of avariable that receives the result value as afloat.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

Playback options

Sound output can be configured using playback options. Currently the output value can be adjusted.
Playback options can be queried:

unsi gned i nt ts3client _get Pl aybackConfi gVal ueAsFl oat (server Connecti onHandl er | D,
ident, result);

ui nt 64 server Connecti onHandl er | D;
const char* ident;
float* result;

e server Connecti onHandl er|I D
ID of the server connection handler for which the playback option is queried.
« ident

Identifier of the parameter to be configured. Possible values are:

35

TeamSpeak 3 Client
SDK Developer Manual

» “volume _modifier”

Modify the voice volume of other speakers. Valueisin decibel, so 0 is no modification, negative values make the signal
quieter and values greater than zero boost the signal louder than it is. Be careful with high positive values, as you can
really cause bad audio quality due to clipping. The maximum possible Valueis 30.

Zero and all negative values cannot cause clipping and distortion, and are preferred for optimal audio quality. Values
greater than zero and less than +6 dB might cause moderate clipping and distortion, but should still be within acceptable
bounds. Values greater than +6 dB will cause clipping and distortion that will negatively affect your audio quality. Itis
advised to choose lower values. Generally we recommend to not allow values higher than 15 db.

“volume_factor_wave’

Adjust the volume of wave files played by ts3client _playWaveFil e and
ts3client _pl ayWaveFi | eHandl e. Thevalueisafloat defining the volume reduction in decibel. Reasonable val-

ues range from “-40.0" (very silent) to “0.0” (loudest).
e result
Address of avariable that receives the playback configuration value as floating-point number.

Returns ERROR _ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

To change playback options, call:

unsi gned int ts3client_setPl aybackConfi gVal ue(server Connecti onHandl er| D,

ue);

ui nt 64 server Connecti onHandl er | D;
const char* ident;
const char* val ue;

* server Connecti onHandl erl D
ID of the server connection handler for which the playback option is queried.
* ident

Identifier of the parameter to be configured. The values are
ts3client _get Pl aybackConfi gVal ueAsFl oat above.

* val ue
String with the value to set the option to, encoded in UTF-8 format.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

the

i dent,

same

val -

E Note
Playback options aretied to a playback device, so changing the values only makes sense after a device has been

opened.

36

TeamSpeak 3 Client
SDK Developer Manual

Example code:

unsigned int error;
fl oat val ue;

if((error = ts3client_setPlaybackConfigVal ue(scHandl erI D, "volune_nodifier", "5.5")) !'= ERROR ok) {
printf("Error setting playback config value: %\ n", error);
return;

}

if((error = ts3client_getPlaybackConfi gVal ueAsFl oat (scHandl erI D, "vol unme_nodifier", &value)) != ERROR ok) {

printf("Error getting playback config value: %\ n", error);
return;

}

printf("Volume nodifier playback option: %\n", value);

In addition to changing the global voice volume modifier of all speakers by changing the “volume_modifier” parameter, voice
volume of individual clients can be adjusted with:

unsigned int ts3client_setdientVol umeMdifier(serverConnectionHandl erl D, clientlD,
val ue) ;

ui nt 64 server Connecti onHandl er | D;
anyl D clientlD
float val ue;

* server Connecti onHandl erl D
ID of the server connection handler on which the client volume modifier should be adjusted.
e clientlD
ID of the client whose volume modifier should be adjusted.
* val ue
The new client volume modifier value as float.
Returns ERROR_ok on success, otherwise an error code asdefined in publ i ¢_errors. h.
When calculating the volume for individual clients, both the global and client volume modifiers will be taken into account.

Client volume modifiers are valid as long as the specified client is visible. Once the client leaves visibility by joining an
unsubscribed channel or disconnecting from the server, the client volume modifier will belost. When the client entersvisibility
again, the modifier has to be set again by calling this function.

Example:

unsigned int error;
anylD clientl D = 123;
float value = 10.0f;

if((error = ts3client_setdientVolumeMdifier(scHandlerl D, clientlD, value)) != ERROR ok) {

37

TeamSpeak 3 Client
SDK Developer Manual

printf("Error setting client volume nodifier: %\n", error);
return;

}

Accessing the voice buffer

The TeamSpeak Client Lib allows users to access the raw playback and capture voice data and even modify it, for exampleto
add effects to the voice. These callbacks are also used by the TeamSpeak client for the voice recording feature.

Using these low-level callbacksis not required and should be reserved for specific needs. Most SDK applications won't need
to implement these callbacks.

The following event is called when a voice packet from a client (not own client) is decoded and about to be played over
your sound device, but before it is 3D positioned and mixed with other sounds. Y ou can use this function to ater the voice
data (for example when you want to do effects on it) or to simply get voice data. The TeamSpeak client uses this function
to record sessions.

voi d onEdi t Pl aybackVoi ceDat aEvent (server Connecti onHandl er1 D, clientlD, sanples, sam
pl eCount, channel s);

ui nt 64 server Connecti onHandl er | D
anyl D clientlD
short* sanpl es;

i nt sanpl eCount ;
i nt channel s;

» server ConnectionHandl er| D
ID of the server connection handler from which the voice data was sent.
e clientlD
ID of the client whose voice data is received.
* sanpl es
Pointer to the voice data (signed 16 hit @ 48KHz).
» sanpl eCount
Number of samplesthe "samples" variable points to.
« channel s

Number of channelsin the sound data.

The following event is called when a voice packet from a client (not own client) is decoded and 3D positioned and about to
be played over your sound device, but before it is mixed with other sounds. Y ou can use this function to alter/get the voice
data after 3D positioning.

38

TeamSpeak 3 Client
SDK Developer Manual

voi d onEdi t Post ProcessVoi ceDat aEvent (server Connecti onHandl er1 D, clientlD, sanples,
sanpl eCount, channel s, channel Speaker Array, channel Fil | Mask);

ui nt 64 server Connecti onHandl er | D
anyl D clientlD;
short* sanpl es;
i nt sanpl eCount ;
i nt channel s;
const unsigned int* channel Speaker Array;
unsi gned int* channel Fi |l | Mask;
» server Connecti onHandl er1 D
ID of the server connection handler from which the voice data was sent.
eclientID
ID of the client whose voice datais received.
* sanpl es
Pointer to the voice data (signed 16 bit @ 48KHz).
« sanpl eCount
Number of samples the "samples' variable points to.
e channel s
Number of channels in the sound data.

e channel Speaker Arr ay

An array with channel s entries, defining the speaker each channels represents. The speaker values can be found in the
SPEAKER_* defineswithinpubl i c_defi niti ons. h.

For example for stereo (channel s = 2), the array might look liks this:

channel Speaker Arr ay[0]
channel Speaker Array[1]

SPEAKER_FRONT_LEFT
SPEAKER_FRONT_RI GHT

e channel Fi | | Mask

A pointer to abit-mask defining which channels arefilled. For efficiency reasons, not all channels need to have actual sound
datain it. So before this data is used, use this bit-mask to check if the channel is actualy filled. If you decide to add data
to achannel that is empty, set the bit for this channel in this mask.

For example, this callback reports:

channels=6

channel SpeakerArray[0] = SPEAKER_FRONT_CENTER
channel SpeakerArray[1] = SPEAKER_LOW_FREQUENCY
channel SpeakerArray[2] = SPEAKER_BACK_LEFT
channel SpeakerArray[3] = SPEAKER_BACK_RIGHT
channel SpeakerArray[4] = SPEAKER_SIDE _LEFT

39

TeamSpeak 3 Client
SDK Developer Manual

channel SpeakerArray[5] = SPEAKER_SIDE_RIGHT // Quite unusual setup
*channelFillMask = 1

This means "samples' pointsto 6 channel data, but only the SPEAKER_FRONT_CENTER channel has data, the other chan-
nels are undefined (not necessarily 0, but undefined).

So for thefirst sample, samples[0] has data and samples[1], samples[2], samples] 3], samples[4] and sampleg[5] are undefined.

If you want to add SPEAKER_BACK_RIGHT channel data you would do something like:

*channel Fil | Mask | = 1<<3; // SPEAKER BACK_RIGHT is the 4th channel (is index 3) according to *channel SpeakerArray.
for(int i=0; i<sanpleCount; ++i){

sanmpl es[3 + (i*channels)] = getChannel SoundDat a(SPEAKER_BACK_RI GHT, i);
}

The following event is called when all sounds that are about to be played back for this server connection are mixed. Thisis
the last chance to ater/get sound.

Y ou can use this function to alter/get the sound data before playback.

voi d onEdi t M xedPl aybackVoi ceDat aEvent (server Connecti onHandl erI D, sanples, sanple-
Count, channel s, channel Speaker Array, channel Fill Mask);

ui nt 64 server Connecti onHandl er | D;
short* sanpl es;
i nt sanpl eCount ;
i nt channel s;
const unsigned int* channel Speaker Array;
unsi gned int* channel Fi | | Mask;
» server Connecti onHandl er|I D
ID of the server connection handler from which the voice data was sent.
* sanpl es
Pointer to the voice data (signed 16 bit @ 48KHz).
» sanpl eCount
Number of samplesthe "samples' variable points to.
e channel s
Number of channelsin the sound data.

e channel Speaker Arr ay

An array with channel s entries, defining the speaker each channels represents. The speaker values can be found in the
SPEAKER_* defineswithinpubl i ¢c_definitions. h.

For example for stereo (channel s = 2), the array might look liks this:

channel Speaker Arr ay[0]
channel Speaker Array[1]

SPEAKER _FRONT_LEFT
SPEAKER_FRONT_RI GHT

40

TeamSpeak 3 Client
SDK Developer Manual

* channel Fi | | Mask

A pointer to abit-mask of which channelsarefilled. For efficiency reasons, not al channels need to have actual sound data
init. So before this data is used, use this bit-mask to check if the channel is actually filled. If you decide to add datato a
channel that is empty, set the bit for this channel in this mask.

The following event is called after sound is recorded from the sound device and is preprocessed. This event can be used to
get/alter recorded sound. Also it can be determined if this sound will be send, or muted. Thisis used by the TeamSpeak client
to record sessions.

If the sound data will be send, (*edited | 2) is true. If the sound data is changed, set bit 1 (*edited |=1). If the sound should
not be send, clear bit 2. (*edited &= ~2)

voi d onEdi t Capt ur edVoi ceDat aEvent (server Connecti onHandl erI D, sanpl es, sanpl eCount,
channel s, edited);

ui nt 64 server Connecti onHandl er | D;
short* sanpl es;
i nt sanpl eCount ;
i nt channel s;
int* edited;
» server Connecti onHandl er1 D
ID of the server connection handler from which the voice data was sent.
e sanpl es
Pointer to the voice data (signed 16 hit @ 48KHz).
» sanpl eCount
Number of samplesthe "samples' variable points to.
e channel s
Number of channelsin the sound data.
 edited

When called, bit 2 indicates if the sound is about to be sent to the server.

On return, set bit 1 if the sound data was changed.

Voice recording

When using the above callbacksto record voice, you should notify the server when recording starts or stops with the following
functions:

unsi gned int ts3client_startVoi ceRecordi ng(server Connecti onHandl erl D);

ui nt 64 server Connecti onHandl er | D;

41

TeamSpeak 3 Client
SDK Developer Manual

unsi gned int ts3client_stopVoi ceRecordi ng(server Connecti onHandl erl D) ;

ui nt 64 server Connecti onHandl er | D;

» server Connecti onHandl er|I D
ID of the server connection handler on which voice recording should be started or stopped.

Returns ERROR _ok on success, otherwise an error code asdefined inpubl i ¢_errors. h.

Playing wave files

The TeamSpeak Client Lib offers support to play wave files from the local harddisk.
To play alocal wavefile, call
unsi gned int ts3client_playWaveFi |l e(server Connecti onHandl erl D, path);

anyl D server Connecti onHandl er| D;
const char* path;

» server Connecti onHandl er|I D

ID of the server connection handler defining which playback deviceisto be used to play the sound file.
e path

Local filepath of the sound filein WAV format to be played, encoded in UTF-8.
Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

Thisisthe simple version of playing a sound file. It's a fire-and-forget mechanism, this function will not block.

The more complex version is to play an optionally looping sound and obtain a handle, which can be used to pause, unpause
and stop the loop.

unsigned int ts3client_playWaveFil eHandl e(server Connecti onHandl erI D, path, |oop,
waveHandl e) ;

anyl D server Connecti onHandl er| D,
const char* path;

int |oop;

ui nt 64* waveHandl e;

» server Connecti onHandl er1 D

ID of the server connection handler defining which playback deviceisto be used to play the sound file.

42

TeamSpeak 3 Client
SDK Developer Manual

e path

Locad filepath of the sound filein WAV format to be played, encoded in UTF-8.
e | oop

If set to 1, the sound will be looping until the handle is paused or closed.
* waveHand! e

Memory address of a variable in which the handle is written. Use this handle to cal
ts3client pauseWaveFi | eHandl e andt s3cl i ent _cl oseWaveFi | eHandl e.

Returns ERROR _ok on success, otherwise an error code asdefinedin publ i ¢c_error s. h. If an error occured, waveHan-
dl e isuninitialized and must not be used.

Using the handle obtained by t s3cl i ent _pl ayWaveFi | eHandl e, sounds can be paused and unpaused with

unsigned int ts3client_pauseWaveFi | eHandl e(server Connecti onHandl erl D, waveHandl e,
pause);

anyl D server Connecti onHandl er| D
ui nt 64 waveHandl e;
i nt pause;

e server Connecti onHandl er|I D

ID of the server connection handler defining which playback deviceisto be used to play the sound file.
* waveHandl| e

Wave handle obtained by t s3cl i ent _pl ayWaveFi | eHandl e.
* pause

If set to 1, the sound will be paused. Set to 0 to unpause.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

Using the handle obtained by t s3cl i ent _pl ayWaveFi | eHandl e, sounds can be closed with
unsi gned int ts3client_cl oseWaveFi | eHandl e(server Connecti onHandl erI D, waveHandl e) ;

anyl D server Connecti onHandl er| D,
ui nt 64 waveHandl e;

e server Connecti onHandl er| D

ID of the server connection handler defining which playback deviceisto be used to play the sound file.

43

TeamSpeak 3 Client
SDK Developer Manual

* waveHand! e
Wave handle obtained by t s3cl i ent _pl ayWaveFi | eHandl e.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

3D Sound

TeamSpeak 3 supports 3D sound to assign each speaker a unique position in 3D space. Provided are functions to modify the
3D position, velocity and orientation of own and foreign clients.

Generally the struct TS3_VECTOR describes a vector in 3D space:

typedef struct {

float x; /* X coordinate in 3D space. */
float vy; /* Y coordinate in 3D space. */
float z; /* Z coordinate in 3D space. */

} TS3_VECTOR;
To set the position, velocity and orientation of the own client in 3D space, call:

unsi gned int ts3client_systenset3DLi stenerAttributes(serverConnectionHandl erl D, po-
sition, forward, up);

ui nt 64 server Connecti onHandl er | D
const TS3_VECTOR* position;

const TS3_VECTOR* forward;
const TS3_VECTOR* up;

» server Connecti onHandl er| D
ID of the server connection handler on which the 3D sound listener attributes are to be set.
e position
3D position of the own client.
If passing NULL, the parameter is ignored and the value not updated.
o forward
Forward orientation of the listener. The vector must be of unit length and perpendicular to the up vector.
If passing NULL, the parameter isignored and the value not updated.
. up
Upward orientation of the listener. The vector must be of unit length and perpendicular to the forward vector.
If passing NULL, the parameter is ignored and the value not updated.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

44

TeamSpeak 3 Client
SDK Developer Manual

To adjust 3D sound system settings use:

unsigned int ts3client _systenset3DSettings(serverConnectionHandl erl D, distanceFac-
tor, rolloffScale);

ui nt 64 server Connecti onHandl er | D;
fl oat di stanceFact or;
float roll offScale;

e server Connecti onHandl er|I D

ID of the server connection handler on which the 3D sound system settings are to be adjusted.
+ di st anceFact or

Relative distance factor. Default is 1.0 = 1 meter
* rol |l of f Scal e

Scaling factor for 3D sound rolloff. Defines how fast sound volume will attenuate. As higher the value, as faster the sound
istoned with increasing distance.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

To adjust a clients position and velocity in 3D space, call:

unsigned int ts3client_channel set 3DAttri butes(serverConnecti onHandl erl D, clientlD,
position);

ui nt 64 server Connecti onHandl er | D;
anyl D clientlD;
const TS3_VECTOR* position;

» server ConnectionHandl er| D

ID of the server connection handler on which the 3D sound channel attributes are to be adjusted.
e clientlD

ID of the client to adjust.
e position

Vector specifying the position of the given client in 3D space.

Returns ERROR _ok on success, otherwise an error code asdefinedin publ i ¢_errors. h.

45

TeamSpeak 3 Client
SDK Developer Manual

The following event is called to cal culate volume attenuation for distance in 3D positioning of clients.

void onCustonBdRol | of f Cal cul ati onCl i ent Event (server Connecti onHandl er1 D, clientlD,
di stance, volune);

ui nt 64 server Connecti onHandl er | D;
anyl D clientlD;
float distance;
float* vol une;
e server Connecti onHandl er| D
ID of the server connection handler on which the volume attenuation cal cul ation occured.
e clientID
ID of the client which is being 3D positioned.
» di stance
The distance between the listener and the client.

e vol une

The volume which the Client Lib calculated. This can be changed in this callback.

The following event is called to calculate volume attenuation for distance in 3D positioning of a wave file that was opened
previously witht s3cl i ent _pl ayWaveFi | eHandl e.

voi d onCustonBdRol | of f Cal cul ati onWaveEvent (server Connecti onHandl erI D, waveHandl e,
di stance, volune);

ui nt 64 server Connecti onHandl er| D;
ui nt 64 waveHandl e;
fl oat distance;
float* vol une;
* server Connecti onHandl er1 D
ID of the server connection handler on which the volume attenuation cal cul ation occured.
* waveHand!| e
Handle for the playing wavefile, returned by t s3cl i ent _pl ayWaveFi | eHandl e.
» di stance
The distance between the listener and the client.

e vol unme

The volume which the Client Lib calculated. This can be changed in this callback.

46

TeamSpeak 3 Client
SDK Developer Manual

This method is used to 3D position awave file that was opened previously witht s3cl i ent _pl ayWaveFi | eHandl e.

unsigned int ts3client_set3DWaveAttri butes(serverConnecti onHandl erl D, waveHandl e,
position);

ui nt 64 server Connecti onHandl er | D;
ui nt 64 waveHandl e;
const TS3_VECTOR* position;
* server Connecti onHandl er| D
ID of the server connection handler on which the volume attenuation calculation occured.
* waveHand! e
Handle for the playing wavefile, returned by t s3cl i ent _pl ayWaveFi | eHandl e.
e position
The 3D position of the sound.
* vol une
The volume which the Client Lib calculated. This can be changed in this callback.

Returns ERROR_ok on success, otherwise an error code asdefined inpubl i ¢_errors. h.

Query available servers, channels and clients

A client can connect to multiple servers. To list all currently existing server connection handlers, call:
unsi gned int ts3client_getServerConnectionHandl erList(result);

ui nt 64** result;

e result

Address of avariable that receivesaNULL-termianted array of all currently existing server connection handler IDs. Unless
an error occurs, the array must bereleased usingt s3cl i ent _freeMenory.

Returns ERROR _ok on success, otherwise an error code as defined in publ i c_errors. h. If an error has occured, the
result array is uninitialized and must not be released.

A list of all channels on the specified virtual server can be queried with:
unsi gned int ts3client_getChannel Li st (server Connecti onHandl erI D, result);

ui nt 64 server Connecti onHandl er | D
ui nt 64** resul t;

47

TeamSpeak 3 Client
SDK Developer Manual

» server Connecti onHandl er|I D
ID of the server connection handler for which the list of channelsis requested.
e result

Address of a variable that receives a NULL-termianted array of channel IDs. Unless an error occurs, the array must be
released usingt s3cl i ent _freeMenory.

Returns ERROR _ok on success, otherwise an error code as defined in publ i c_errors. h. If an error has occured, the
result array is uninitialized and must not be released.

To get alist of all currently visible clients on the specified virtual server:
unsi gned intts3client_getdientList(serverConnectionHandl erlD, result);

ui nt 64 server Connecti onHandl er | D;
anyl D** result;

e server ConnectionHandl erl D
ID of the server connection handler for which the list of clientsis requested.
e result

Address of avariablethat receivesaNUL L -termianted array of client IDs. Unlessan error occurs, the array must bereleased
usingt s3cli ent _freeMenory.

Returns ERROR _ok on success, otherwise an error code as defined in publ i c_errors. h. If an error has occured, the
result array is uninitialized and must not be released.

To get alist of al clientsin the specified channel if the channel is currently subscribed:

unsigned int ts3client_getChannel dientlList(serverConnectionHandl erl D, channel I D,
result);

ui nt 64 server Connecti onHandl er | D;
ui nt 64 channel | D;
anyl D** result;

» server Connecti onHandl er| D
ID of the server connection handler for which the list of clients within the given channel is requested.
* channel I D

ID of the channel whose client list is requested.

48

TeamSpeak 3 Client
SDK Developer Manual

e result

Address of avariablethat receivesaNUL L -termianted array of client IDs. Unlessan error occurs, the array must be released
usingt s3cli ent _freeMenory.

Returns ERROR _ok on success, otherwise an error code as defined in publ i c_errors. h. If an error has occured, the
result array is uninitialized and must not be released.

To query the channel ID the specified client has currently joined:

unsigned int ts3client_getChannel O Cient(serverConnectionHandlerI D, clientID, re-
sult);

ui nt 64 server Connecti onHandl er | D;
anylD clientlD;
ui nt 64* result;

* server Connecti onHandl erl D
ID of the server connection handler for which the channel 1D is requested.
e clientlD
ID of the client whose channel ID is requested.
* result
Address of avariable that receives the ID of the channel the specified client has currently joined.

Returns ERROR _ok on success, otherwise an error code asdefined inpubl i ¢_errors. h.

To get the parent channel of agiven channel:

unsi gned int ts3client_getParent Channel O Channel (server Connecti onHandl erI D, chan-
nel I D, result);

ui nt 64 server Connecti onHandl er | D
ui nt 64 channel | D
ui nt 64* result;

» server ConnectionHandl er| D

ID of the server connection handler for which the parent channel of the specified channel is requested.
« channel I D

ID of the channel whose parent channel ID is requested.

e result

49

TeamSpeak 3 Client
SDK Developer Manual

Address of avariable that receives the ID of the parent channel of the specified channel.
If the specified channel has no parent channel, r esul t will be set to the reserved channel 1D O.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

Example codeto print alist of all channels on avirtual server:

ui nt 64* channel s;
if(ts3client_getChannel Li st(serverlD, &channels) == ERROR ok) {
for(int i=0; channels[i] !'= NULL; i++) {
printf("Channel ID: %\n", channels[i]);
}

ts3client_freeMenory(channels);

}
To print al visible clients:
anyl D* clients;
if(ts3client_getCientList(scHandl erl D, &clients) == ERROR ok) {
for(int i=0; clients[i] !'= NULL; i++) {
printf("Client ID %\n", clients[i]);
}

ts3client_freeMenory(clients);

}
Example to print al clients who are member of channel with ID 123:

uint 64 channel I D = 123; /* Channel IDin this exanple */
anyl D *clients;

if(ts3client_getChannel dientlist(scHandl erl D, channel | D) == ERROR ok) {
for(int i=0; clients[i] !'= NULL; i++) {
printf("Client ID %\n", clients[i]);

ts3client_freeMenory(clients);

}

Retrieve and store information

The Client Lib remembersalot of information which have been passed through previoudly. The datais available to be queried
by aclient for convinience, so the interface code doesn't need to store the same information as well. The client can in many

cases also modify the stored information for further processing by the server.

All strings passed to and from the Client Lib need to be encoded in UTF-8 format.
Client information

Information related to own client

Once connection to a TeamSpeak 3 server has been established, a unique client ID is assigned by the server. This ID can

be queried with

unsigned int ts3client_getCientlD(serverConnectionHandl erl D, result);

50

TeamSpeak 3 Client
SDK Developer Manual

ui nt 64 server Connecti onHandl er | D;
anyl D* result;

» server Connecti onHandl er| D

ID of the server connection handler on which we are querying the own client ID.
* result

Address of avariable that receivesthe client ID. Client IDs start with the value 1.

Returns ERROR_ok on success, otherwise an error code asdefinedin publ i ¢_errors. h.

Various information related about the own client can be checked with:

unsigned int ts3client_getdientSelfVariabl eAslnt(serverConnecti onHandl erl D, fl ag,
result);

ui nt 64 server Connecti onHandl er | D
ClientProperties flag;
int* result;

unsi gned i nt ts3client_getdientSel fVariabl eAsString(server Connecti onHandl erl D,
flag, result);

ui nt 64 server Connecti onHandl er | D;
ClientProperties flag;
char** result;

» server Connecti onHandl erl D

ID of the server connection handler on which the information for the own client is requested.
- flag

Client propery to query, see below.
* result

Address of a variable which receives the result value as int or string, depending on which function is used. In case of a
string, memory must be released usingt s3cl i ent _freeMenory, unlessan error occured.

Returns ERROR_ok on success, otherwise an error code as defined in publ i c_errors. h. For the string version: If an
error has occured, the result string is uninitialized and must not be released.

The parameter f | ag specifies the type of queried information. It is defined by the enum ClientProperties:

enum Client Properties {
CLI ENT_UNI QUE_I DENTI FI ER = O, /lautonatically up-to-date for any client "in view', can be used

51

TeamSpeak 3 Client
SDK Developer Manual

//to identify this particular client installation

CLI ENT_NI CKNAME, //automatically up-to-date for any client "in view'

CLI ENT_VERSI ON, //for other clients than ourself, this needs to be requested
/1 (=> requestdientVari abl es)

CLI ENT_PLATFORM //for other clients than ourself, this needs to be requested
/1 (=> requestdientVari abl es)

CLI ENT_FLAG_TALKI NG, //automatically up-to-date for any client that can be heard
/1 (in room/ whisper)

CLI ENT_I NPUT_MUJTED, //automatically up-to-date for any client "in view', this clients
// m crophone nute status

CLI ENT_OUTPUT_MUJTED, //automatically up-to-date for any client "in view', this clients
/I headphones/ speakers mute status

CLI ENT_OUTPUTONLY_MJUTED //automatically up-to-date for any client "in view', this clients
/I headphones/ speakers only nute status

CLI ENT_I NPUT_HARDWARE, //automatically up-to-date for any client "in view', this clients
// m crophone hardware status (is the capture devi ce opened?)

CLI ENT_OUTPUT_HARDWARE, //automatically up-to-date for any client "in view', this clients
/ I headphone/ speakers hardware status (is the playback device opened?)

CLI ENT_I NPUT_DEACTI VATED, //only usable for ourself, not propagated to the network

CLI ENT_I DLE_TI ME, //internal use

CLI ENT_DEFAULT_CHANNEL, /lonly usable for ourself, the default channel we used to connect

//on our |ast connection attenpt
CLI ENT_DEFAULT_CHANNEL_PASSWORD, / /i nt er nal use

CLI ENT_SERVER_PASSWORD, //internal use

CLI ENT_META_DATA, //automatically up-to-date for any client "in view', not used by
/| Teantpeak, free storage for sdk users

CLI ENT_I S_MJTED, //only make sense on the client side locally, "1" if this client is
//currently nuted by us, "0" if he is not

CLI ENT_I S_RECORDI NG, //automatically up-to-date for any client "in view

CLI ENT_VCOLUME_MODI FI CATOR, //internal use

CLI ENT_VERSI ON_SI GN, //internal use

CLI ENT_SECURI TY_HASH, //SDK only: Hash is provided by an outside source. A channel wllI

//use the security salt + other client data to cal cul ate a hash,
//which must be the same as the one provided here.
CLI ENT_ENDMARKER,

CLI ENT_UNI QUE_I DENTI FI ER

String: Unique ID for this client. Stays the same after restarting the application, so you can use this to identify individual
USers.

CLI ENT_NI CKNAME
Nickname used by the client. This value is always automatically updated for visible clients.
CLI ENT_VERSI ON

Application version used by this client. Needs to be requested witht s3cl i ent _request d i ent Vari abl es unless
called on own client.

CLI ENT_PLATFORM

Operating system used by this client. Needs to be requested with t s3cl i ent _request i ent Vari abl es unless
called on own client.

CLI ENT_FLAG_TALKI NG
Set when the client is currently sending voice datato the server. Always available for visible clients.

Note: Y ou should query this flag for the own client usingt s3cl i ent _get C i ent Sel f Vari abl eAsl nt .

52

TeamSpeak 3 Client
SDK Developer Manual

CLI ENT_I NPUT_MJTED

Indicates the mute status of the clients capture device. Possible values are defined by the enum Mutel nputStatus. Always
availablefor visible clients.

CLI ENT_OUTPUT_MJTED

Indicates the combined mute status of the clients playback and capture devices. Possible values are defined by the enum
MuteOutputStatus. Always available for visible clients.

CLI ENT_OUTPUTONLY_MUTED

Indicates the mute status of the clients playback device. Possible values are defined by the enum MuteOutputStatus. Always
available for visible clients.

CLI ENT_I NPUT_HARDWARE

Set if the clients capture device is not available. Possible values are defined by the enum Hardwarel nputStatus. Always
availablefor visible clients.

CLI ENT_OUTPUT_HARDWARE

Set if the clients playback deviceis not available. Possible values are defined by the enum HardwareOutputStatus. Always
available for visible clients.

CLI ENT_I NPUT_DEACTI VATED

Set when the capture device has been deactivated as used in Push-To-Talk. Possible values are defined by the enum Input-
DeactivationStatus. Only used for the own clients and not available for other clientsasit doesn't get propagated to the server.

CLI ENT_| DLE_TI ME
Time the client has been idle. Needs to be requested witht s3cl i ent _request C i ent Vari abl es.
CLI ENT_DEFAULT_CHANNEL

CLI ENT_DEFAULT_CHANNEL_PASSWORD

Default channel name and password used in the last t s3cl i ent _st art Connecti on call. Only available for own
client.

CLI ENT_META_DATA

Not used by TeamSpeak 3, offers free storage for SDK users. Always available for visible clients.

CLI ENT_I S MJTED

Indicates a client has been locally muted witht s3cl i ent _request Mut ed i ent s. Client-side only.
CLI ENT_| S_RECORDI NG

Indicates aclient is currently recording all voice datain his channel.

CLI ENT_VOLUME_MODI FI CATCR

The client volume modifier set by t s3cl i ent _set d i ent Vol umeModi fi er.

53

TeamSpeak 3 Client
SDK Developer Manual

* CLI ENT_SECURI TY_HASH

Containsclient security hash (optional feature). Thishash isused to check if thisclient isallowed to enter specified channels
with amatching CHANNEL _SECURI TY_SALT. Motivation isto enforce clients joining a server with the specific identity,
nickname and metadata.

Please see the chapter “ Security salts and hashes’ in the Server SDK documentation for details.

Generally al types of information can be retrieved as both string or integer. However, in most cases the expected datatypeis
obvious, like querying CL1 ENT_NI CKNAME will clearly require to store the result as string.

Example 1: Query client nickname
char* ni cknamne;

if(ts3client_getdientSelfVariabl eAsString(scHandl erl D, CLI ENT_NI CKNAME, &nicknane) == ERROR ok) {
printf("My nicknane is: %\n", s);
ts3client_freeMenory(s);

}

Example 2: Check if own client is currently talking (to be exact: sending voice data)
int talking;

if(ts3client_getdientSelfVariabl eAslnt(scHandl erl D, CLI ENT_FLAG TALKI NG, &tal ki ng) == ERROR ok) {
switch(tal king) {
case STATUS_TALKI NG
/1 1 amcurrently talking
br eak;
case STATUS_NOT_TALKI NG
/1 1 amcurrently not talking
br eak;
case STATUS_TALKI NG WHI LE_DI SABLED:
/1 1 amtal king while m crophone is disabled
br eak;
defaul t:
printf("Invalid value for CLIENT_FLAG TALKING n");

Information related to the own client can be modified with

unsigned int ts3client_setdientSelfVariabl eAslnt(serverConnectionHandl eri D, flag,
val ue) ;

ui nt 64 server Connecti onHandl er | D
CientProperties flag;
i nt val ue;

unsi gned i nt ts3client_setdientSel fVariabl eAsString(server Connecti onHandl erl D,
flag, value);

ui nt 64 server Connecti onHandl er | D;
CientProperties flag;

TeamSpeak 3 Client
SDK Developer Manual

const char* val ue;

» server ConnectionHandl er| D

ID of the server connection handler on which the information for the own client is changed.
- flag

Client propery to query, see above.
* val ue

Vaue the client property should be changed to.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

2 | mportant

After modifying one or more client variables, you must flush the changes. Flushing ensures the changes are sent
to the TeamSpeak 3 server.

unsigned int ts3client flushdientSelfUpdates(serverConnectionHandl erl D,
r et ur nCode) ;

ui nt 64 server Connecti onHandl er | D
const char* returnCode;
The idea behind flushing is, one can modify multiple values by callingt s3cl i ent _set C i ent Vari abl eAsStri ng

andts3client_setdientVariabl eAsl nt and then apply all changesin one step.

For example, to change the own nickname:

/* Modify data */

if(ts3client_setdientSelfVariabl eAsString(scHandl erl D, CLI ENT_N CKNAME, "Joe") != ERROR ok) {
printf("Error setting client variable\n");
return;

}

/* Flush changes */

if(ts3client_flushdientSelfUpdates(scHandl erl D, NULL) != ERROR ok) {
printf("Error flushing client updates");

}

Example for doing two changes:

/* Modify data 1 */

if(ts3client_setCientSelfVariableAslnt(scHandl erl D, CLI ENT_AWAY, AWAY_ZZ7) != ERROR ok) {
printf("Error setting away node\n");
return;

}

/* Modify data 2 */

if(ts3client_setCientSelfVariableAsString(scHandl erl D, CLI ENT_AWAY_MESSAGE, "Lunch") != ERROR ok) {
printf("Error setting away nessage\n");
return;

55

TeamSpeak 3 Client
SDK Developer Manual

/* Flush changes */
if(ts3client_flushdientSelfUpdates(scHandl erl D, NULL) != ERROR ok) {
printf("Error flushing client updates");

}

Example to mute and unmute the microphone:

unsigned int error;
bool shoul dTal k;

shoul dTal k = i sPushToTal kButtonPressed(); // Your key detection inplenmentation
if((error = ts3client_setCientSelfVariabl eAsl nt (scHandl er1 D, CLI ENT_I NPUT_DEACTI VATED,
shoul dTal k ? | NPUT_ACTI VE : | NPUT_DEACTI VATED)) != ERROR ok) {
char* errorMsg;
if(ts3client_getErrorMessage(error, &errorMg) != ERROR ok) {
printf("Error toggling push-to-talk: %\n", errorMsg);
ts3client_freeMenory(errorMsg);

}
return;
}
if(ts3client_flushdientSelfUpdates(scHandl erl D, NULL) != ERROR ok) {
char* errorMsg;
if(ts3client_getErrorMessage(error, &errorMg) != ERROR ok) {

printf("Error flushing after toggling push-to-talk: %\n", errorMsg);
ts3client_freeMenory(errorMsg);

}
}

See the FAQ section for further details on implementing Push-To-Talk with
ts3client _setdientSel fVariabl eAsl nt.

Information related to other clients

Information related to other clients can be retrieved in a similar way. Unlike own clients however, information cannot be
modified.

To query client related information, use one of the following functions. The parameter f | ag is defined by the enum Client-
Properties as shown above.

unsigned int ts3client_getdientVariabl eAslnt(serverConnecti onHandl erl D, clientlD,
flag, result);

ui nt 64 server Connecti onHandl er | D;
anyl D clientlD;

ClientProperties flag;

int* result;

unsigned int ts3client _getdientVariabl eAsU nt 64(server Connecti onHandl erI D, clien-
tID, flag, result);

ui nt 64 server Connecti onHandl er | D
anyl D clientlD;

ClientProperties flag;

ui nt 64* result;

56

TeamSpeak 3 Client
SDK Developer Manual

unsigned int ts3client_getdientVariableAsString(serverConnectionHandlerl D, clien-
tID, flag, result);

ui nt 64 server Connecti onHandl er | D;
anyl D clientlD;

ClientProperties flag;

char** result;

* server Connecti onHandl er| D
ID of the server connection handler on which the information for the specified client is requested.
e clientlD
ID of the client whose property is queried.
- flag
Client propery to query, see above.
* result

Address of avariable which receives the result value as int, uint64 or string, depending on which function is used. In case
of astring, memory must bereleased usingt s3cl i ent _f reeMenory, unless an error occured.

Returns ERROR _ok on success, otherwise an error code as defined in publ i c_error s. h. For the string version: If an
error has occured, the result string is uninitialized and must not be released.

As the Client Lib cannot have all information for all users available al the time, the latest data for a given client can be
requested from the server with:

unsigned int ts3client_requestdientVariabl es(serverConnectionHandl erl D, clientlD,
r et ur nCode) ;

ui nt 64 server Connecti onHandl er | D
anyl D clientlD;
const char* returnCode;

The function requires one second delay before calling it again on the same client ID to avoid flooding the server.
» server Connecti onHandl er| D
ID of the server connection handler on which the client variables are requested.
e clientlD
ID of the client whose variables are requested.
* returnCode

See return code documentation. Pass NULL if you do not need this feature.

57

TeamSpeak 3 Client
SDK Developer Manual

Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

After requesting the information, the following event is called. This event is also called everytime a client variable has been
changed:

voi d onUpdateC ient Event (serverConnecti onHandl erI D, clientID, invokerlD, invoker-
Name, invokerUni queldentifier);

ui nt 64 server Connecti onHandl er | D;
anyl D clientlD;

anyl D i nvoker| D,

const char* invoker Naneg;

const char* invokerUni queldentifier;

* server Connecti onHandl er| D
ID of the server connection handler on which the client variables are now available or have changed.
e clientlD
ID of the client whose variables are now available or have changed.
* invokerl D
ID of the client who edited this clients variables.
e i nvoker Name
Nickname of the client who edited this clients variables.
* i nvoker Uni quel dentifier
Unique ID of the client who edited this clients variables.

The event does not carry the information per se, but now the Client Lib guarantees to have the clients in-
formation available, which can be subsequently queried with ts3client _getd i entVari abl eAsl nt and
ts3client_getdientVariabl eAsString.

Whisper lists

A client with a whisper list set can talk to the specified clients and channels bypassing the standard rule that voice is only
transmitted to the current channel. Whisper lists can be defined for individual clients. A whisper list consists of an array of
client IDs and/or an array of channel IDs.

unsigned int ts3client_requestdientSetWisperlList(serverConnectionHandlerlD, cli-
ent| D, targetChannel | DArray, targetdientlDArray, returnCode);

ui nt 64 server Connecti onHandl er | D;
anyl D clientlD;

const ui nt64* targetChannel | DArray;
const anylD* targetdientl| DArray;

58

TeamSpeak 3 Client
SDK Developer Manual

const char* returnCode;

» server Connecti onHandl erl D
ID of the server connection handler on which the clients whisper list is modified.
e clientlD
ID of the client whose whisper list is modified. If set to O, the own client is modified (same as setting to own client D).
e target Channel | DArr ay
Array of channel IDs, terminated with 0. These channels will be added to the whisper list.
To clear thelist, pass NULL or an empty array.
e targetdient| DArray
Array of client IDs, terminated with 0. These clients will be added to the whisper list.
To clear thelist, pass NULL or an empty array.
* returnCode
See return code documentation. Pass NULL if you do not need this feature.
Returns ERROR _ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

To disable the whisperlist for the given client, pass NULL to both t ar get Channel | DArray andtargetCientl -
DAr r ay. Careful: If you pass two empty arrays, whispering is not disabled but instead one would still be whispering to no-
body (empty lists).

To control which client isallowed to whisper to own client, the Client Lib implements an internal whisper whitelist mechanism.
When a client recieves a whisper while the whispering client has not yet been added to the whisper allow lit, the receiving
client gets the following event. Note that whisper voice datais not received until the sending client is added to the receivers
whisper allow list.

voi d onl gnor edWi sper Event (server Connecti onHandl erI D, clientID);
ui nt 64 server Connecti onHandl er | D;
anyl D clientlD
e server Connecti onHandl er|I D
ID of the server connection handler on which the event occured.
e clientlD
ID of the whispering client.

The receiving client can decide to allow whispering from the sender and add the sending client to the whisper alow list by
calingt s3cl i ent _al | owhi sper skFrom If the sender is not added by the receiving client, this event persists being
called but no voice datais transmitted to the receiving client.

59

TeamSpeak 3 Client
SDK Developer Manual

To add aclient to the whisper allow list:
unsi gned int ts3client_all owhi spersFron(server ConnectionHandl erI D, cl1D);
ui nt 64 server Connecti onHandl er | D;
anyl D cl I D
» server Connecti onHandl er| D
ID of the server connection handler on which the client should be added to the whisper allow list.
e clID
ID of the client to be added to the whisper alow list.
To remove aclient from the whisper allow list:

unsi gned i nt ts3client_renmoveFromAl | owedWi sper sFrom(server Connecti onHandl er | D,
cl1D);

ui nt 64 server Connecti onHandl er | D;
anyl D cl I D
* server Connecti onHandl er| D
ID of the server connection handler on which the client should be removed from the whisper allow list.
«clID
ID of the client to be removed from the whisper alow list.

It won't have bad sideeffectsif the same client ID is added to the whisper allow list multiple times.

Channel information

Querying and modifying information related to channels is similar to dealing with clients. The functions to query channel
information are:

unsi gned i nt ts3client_get Channel Vari abl eAsl nt (server Connecti onHandl er1 D, channel | D,
flag, result);

ui nt 64 server Connecti onHandl er | D;
ui nt 64 channel | D

Channel Properties flag;

int* result;

unsi gned int ts3client_getChannel Vari abl eAsUl nt 64(server Connecti onHandl er|I D, chan-
nel 1D, flag, result);

ui nt 64 server Connecti onHandl er | D;
ui nt 64 channel | D;
Channel Properties flag;

60

TeamSpeak 3 Client
SDK Developer Manual

ui nt 64* result;

unsigned int ts3client_getChannel Vari abl eAsStri ng(server Connecti onHandl erl D, chan-
nel 1D, flag, result);

ui nt 64 server Connecti onHandl er | D
ui nt 64 channel | D;

Channel Properties flag;

char* result;

» server Connecti onHandl er| D
ID of the server connection handler on which the information for the specified channel is requested.
* channel I D
ID of the channel whose property is queried.
- flag
Channel propery to query, see below.
e result

Address of avariable which receives the result value of typeint, uinté4 or string, depending on which function is used. In
case of astring, memory must bereleased usingt s3cl i ent _f r eeMenor y, unless an error occured.

Returns ERROR _ok on success, otherwise an error code as defined in publ i ¢_errors. h. For the string version: If an
error has occured, the result string is uninitialized and must not be released.

The parameter f | ag specifies the type of queried information. It is defined by the enum Channel Properties:

enum Channel Properties {

CHANNEL_NAME = O, // Avail able for all channels that are "in view', always up-to-date
CHANNEL_TOPI C, /1 Avail able for all channels that are "in view', always up-to-date
CHANNEL_DESCRI PTI ON, /1 Must be requested (=> request Channel Descri ption)

CHANNEL_ PASSWORD, /I not available client side

CHANNEL_ CODEC, /1 Avail able for all channels that are "in view', always up-to-date
CHANNEL_CODEC_QUALI TY, //Avail able for all channels that are "in view', always up-to-date
CHANNEL_MAXCLI ENTS, /1 Avail able for all channels that are "in view', always up-to-date
CHANNEL_MAXFAM LYCLI ENTS, /1 Avail able for all channels that are "in view', always up-to-date
CHANNEL _ ORDER, /1 Avail able for all channels that are "in view', always up-to-date
CHANNEL_FLAG_PERMANENT, //Avail able for all channels that are "in view', always up-to-date
CHANNEL_FLAG_SEM _PERMANENT, //Available for all channels that are "in view', always up-to-date
CHANNEL_FLAG_DEFAULT, /1 Avail able for all channels that are "in view', always up-to-date
CHANNEL_FLAG_PASSWORD, /1 Avail able for all channels that are "in view', always up-to-date
CHANNEL_CODEC_LATENCY_FACTOR, //Available for all channels that are "in view', always up-to-date

i

CHANNEL_CODEC | S_UNENCRYPTED, //Available for all channels that are n view', always up-to-date
CHANNEL_SECURI TY_SALT, //Sets the options+salt for security hash (SDK only)
CHANNEL_DELETE_DELAY, // How many seconds to wait before deleting this channel

CHANNEL_ ENDVARKER,

« CHANNEL_NANE

String: Name of the channel.

61

TeamSpeak 3 Client
SDK Developer Manual

+ CHANNEL_TOPI C
String: Single-line channel topic.
* CHANNEL_DESCRI PTI ON

String: Optional channel description. Can have multiple lines. Clients need to request updating this variable for a specified
channel using:

unsi gned int ts3client_request Channel Descri ption(server ConnectionHandl erl D, chan-
nel I D, returnCode);

ui nt 64 server Connecti onHandl er | D;
ui nt 64 channel | D;
const char* returnCode;

* CHANNEL_PASSWORD

String: Optional password for password-protected channels.

E Note
Clients can only set this value, but not query it.

If apassword is set or removed by modifying this field, CHANNEL_FLAG_PASSWORD will be automatically adjusted.
« CHANNEL_CODEC

Int: Codec used for this channel:

* 0- Speex Narrowband (8 kHz)

« 1 - Speex Wideband (16 kHz)

2 - Speex Ultra-Wideband (32 kHz)

3 - Celt (Mono, 48kHz)

4 - Opus Voice (Mono, 48khz)
* 5-OpusMusic (Stereo, 48khz)
See Sound codecs.

« CHANNEL_CODEC_QUALI TY

Int (0-10): Quality of channel codec of this channel. Valid values range from 0 to 10, default is 7. Higher values result in
better speech quality but more bandwidth usage.

See Encoder options.
e CHANNEL_MAXCLI ENTS

Int: Number of maximum clients who can join this channel.

62

TeamSpeak 3 Client
SDK Developer Manual

CHANNEL _MAXFAM LYCLI ENTS
Int: Number of maximum clients who can join this channel and al subchannels.
CHANNEL _ORDER

Int: Defines how channels are sorted in the GUI. Channel order isthe ID of the predecessor channel after which this channel
isto be sorted. If O, the channel is sorted at the top of its hirarchy.

For more information please see the chapter Channel sorting.
CHANNEL _FLAG PERMANENT / CHANNEL _FLAG SEM _PERMANENT
Concerning channel durability, there are three types of channels:

e Temporary

Temporary channels have neither the CHANNEL _FLAG PERMANENT nor CHANNEL _FLAG SEM _ PERMANENT flag
set. Temporary channels are automatically deleted by the server after the last user hasleft and the channel isempty. They
will not be restored when the server restarts.

* Semi-permanent

Semi-permanent channels are not automatically deleted when the last user left but will not be restored when the server
restarts.

e Permanent
Permanent channels will be restored when the server restarts.
CHANNEL FLAG DEFAULT

Int (0/1): Channel isthe default channel. There can only be one default channel per server. New userswho did not configure
achannel tojoinonloginint s3cl i ent _start Connecti on will automatically join the default channel.

CHANNEL _FLAG _PASSWORD
Int (0/1): If set, channel is password protected. The password itself is stored in CHANNEL _ PASSWORD.
CHANNEL _CODEC_LATENCY_FACTOR

(Int: 1-10): Latency of this channel. This allows to increase the packet size resulting in less bandwidth usage at the cost of
higher latency. A value of 1 (default) isthe best setting for lowest latency and best quality. If bandwidth or network quality
are restricted, increasing the latency factor can help stabilize the connection. Higher latency values are only possible for
low-quality codec and codec quality settings.

For best voice quality alow latency factor is recommended.
CHANNEL _CCODEC_| S_UNENCRYPTED

Int (0/2): If 1, thischannel isnot using encrypted voice data. If 0, voice datais encrypted for this channel. Note that channel
voice data encryption can be globally disabled or enabled for the virtual server. Changing this flag makes only sense if
global voice data encryption is set to be configured per channel as CODEC _ENCRYPTI ON_PER_CHANNEL (the default
behaviour).

CHANNEL _SECURI TY_SALT

63

TeamSpeak 3 Client
SDK Developer Manual

Contains the channels security salt (optional feature). When a client connects, the clients hash value in
CLI ENT_SECURI TY_HASH is check against the channel salt to allow or deny the client to join this channel. Motivation
isto enforce clients joining a server with the specific identity, nickname and metadata.

Please see the chapter “ Security salts and hashes’ in the Server SDK documentation for details.
+ CHANNEL_ DELETE DELAY
This parameter defines how many seconds the server waits until atemporary channel is deleted when empty.

When a temporary channel is created, atimer is started. If a user joins the channel before the countdown is finished, the
channel is not deleted. After the last person has |eft the channel, the countdown starts again. CHANNEL _DEL ETE_DELAY
defines the length of this countdown in seconds.

The time since the last client has left the temporary <channel can be queried with
ts3cli ent _get Channel Enpt ySecs [92].

To modify channel data use

unsi gned i nt ts3client_set Channel Vari abl eAsl nt (server Connecti onHandl er1 D, channel | D,
flag, value);

ui nt 64 server Connecti onHandl er | D
ui nt 64 channel | D;

Channel Properties flag;

i nt val ue;

unsigned int ts3client_setChannel Vari abl eAsUl nt 64(server Connecti onHandl er|I D, chan-
nel I D, flag, value);

ui nt 64 server Connecti onHandl er | D;
ui nt 64 channel | D;

Channel Properties flag;

ui nt 64 val ue;

unsigned int ts3client_setChannel Vari abl eAsString(server Connecti onHandl erl D, chan-
nel I D, flag, value);

ui nt 64 server Connecti onHandl er | D;
ui nt 64 channel | D

Channel Properties flag;

const char* val ue;

e server Connecti onHandl er| D

ID of the server connection handler on which the information for the specified channel should be changed.

TeamSpeak 3 Client
SDK Developer Manual

* channel I D

ID of the channel whoses property should be changed.
- flag

Channel propery to change, see above.
* val ue

Vauethe channel property should be changed to. Depending on which function is used, the value can be of typeint, uint64
or string.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

2 | mportant
After modifying one or more channel variables, you have to flush the changes to the server.

unsi gned i nt ts3client_flushChannel Updat es(server Connecti onHandl erl D, chan-
nel 1 D) ;

ui nt 64 server Connecti onHandl er | D;
ui nt 64 channel | D;

As example, to change the channel name and topic:

/* Modify data 1 */
if(ts3client_setChannel Vari abl eAsString(scHandl erl D, channel | D, CHANNEL_NAME,
"Ot her channel nane") != ERROR ok) {
printf("Error setting channel name\n");
return;

}

/* Modify data 2 */
if(ts3client_setChannel Vari abl eAsString(scHandl erl D, channel | D, CHANNEL_TOPI C,
"Ot her channel topic") != ERROR ok) {
printf("Error setting channel topic\n");
return;

}

/* Flush changes */

if(ts3client_flushChannel Updat es(scHandl erl D, channel I D) != ERROR ok) {
printf("Error flushing channel updates\n");
return;

After a channel was edited using ts3client _set Channel Vari abl eAsl nt or
ts3client _set Channel Vari abl eAsSt ri ng and the changes were flushed to the server, the edit is announced with
the event:

voi d onUpdat eChannel Edi t edEvent (server Connecti onHandl er1 D, channel I D, i nvokerlI D, i n-
voker Nare, invokerUni queldentifier);

ui nt 64 server Connecti onHandl er | D;

65

TeamSpeak 3 Client
SDK Developer Manual

ui nt 64 channel I D;

anyl D i nvoker | D

const char* invoker Nane;

const char* invokerUni queldentifier;

* server Connecti onHandl er| D
ID of the server connection handler on which the channel has been edited.
* channel I D
ID of edited channel.
* invokerl D
ID of the client who edited the channel.
* i nvoker Nane
String with the name of the client who edited the channel.
* i nvoker Uni quel dentifier

String with the unique ID of the client who edited the channel.

To find the channel 1D from a channels path:

unsi gned i nt ts3client_get Channel | DFr onTChannel Nanes(server Connect i onHandl er I D, chan-
nel NaneArray, result);

ui nt 64 server Connecti onHandl er | D;

char** channel NaneArr ay;
ui nt 64* result;

» server Connecti onHandl er|I D
ID of the server connection handler on which the channel ID is queried.
e channel NaneArr ay

Array defining the position of the channel: "grandparent"”, "parent", "channel”, "". Thearray isterminated by an empty string.
e result
Address of avariable which receives the queried channel 1D.

Returns ERROR _ok on success, otherwise an error code asdefined inpubl i ¢_errors. h.

Channel voice data encryption

66

TeamSpeak 3 Client
SDK Developer Manual

Voice data can be encrypted or unencrypted. Encryption will increase CPU load, so should be used only when required.
Encryption can be configured per channel (the default) or globally enabled or disabled for the whole virtual server. By default
channels are sending voice data unencrypted, newly created channels would need to be set to encrypted if required.

To configure the global virtua server encryption settings, modify the virtua server property
VI RTUALSERVER CODEC ENCRYPTI ON_MODE to one of the following values:

enum CodecEncrypti onMde {
CODEC_ENCRYPTI ON_PER CHANNEL = 0, // Default
CODEC_ENCRYPTI ON_FORCED_OFF,
CODEC_ENCRYPTI ON_FORCED _ON,

}s

V oicedataencryption per channel can be configured by setting the channel property CHANNEL _CODEC | S UNENCRYPTED
to O (encrypted) or 1 (unencrypted) if global encryption mode is CODEC_ENCRYPTI ON_PER _CHANNEL. If encryption is
forced on or off globally, the channel property will be automatically set by the server.

Channel sorting

The order how channels should be display in the GUI is defined by the channel variable
CHANNEL ORDER, which can be queried with t s3cl i ent _get Channel Vari abl eAsUl nt 64 or changed with
ts3client _set Channel Vari abl eAsUl nt 64.

The channel order isthe ID of the predecessor channel after which the given channel should be sorted. An order of 0 means
the channel is sorted on the top of its hirarchy.

Channel_1 (ID =1, order = 0)
Channel_2 (ID = 2, order = 1)
Subchannel_1 (ID =4, order = 0)
Subsubchannel_1 (ID = 6, order = 0)
Subsubchannel_2 (ID = 7, order = 6)
Subchannel_2 (ID =5, order = 4)
Channel_3 (ID = 3, order = 2)

When a new channel is created, the client is responsible to set a proper channel order. With the default value of 0 the channel
will be sorted on the top of its hirarchy right after its parent channel.

When moving achannel to anew parent, the desired channel order can bepassedtot s3cl i ent _r equest Channel Move.

To move the channel to another position within the current hirarchy - the parent channel stays the same -, adjust the
CHANNEL _ORDER variable witht s3cl i ent _set Channel Vari abl eAsUl nt 64.

After connecting to aTeamSpeak 3 server, the client will beinformed of all channelsby theonNewChannel Event callback.
The order how channels are propagated to the client by this event is:

 First the complete channel path to the default channel, which is either the servers default channel with the flag
CHANNEL _FLAG DEFAULT or theusersdefault channel passedtot s3cl i ent _st art Connect i on. Thisensuresthe
channel joined on login is visible as soon as possible.

In above example, assuming the default channel is “ Subsubchannel 2", the channels would be announced in the following
order: Channel_2, Subchannel_1, Subsubchannel 2.

After the default channel path has completely arrived, the connection status (see enum ConnectStatus, annouced to the client
by the callback onConnect St at usChangeEvent) changesto STATUS CONNECTI ON_ESTABLI SHI NG

* Next all other channelsin the given order, where subchannels are announced right after the parent channel.

67

TeamSpeak 3 Client
SDK Developer Manual

To continue the example, the remaining channels would be announced in the order of: Channel_1, Subsubchannel_1, Sub-
channel_2, Channel_3 (Channel_2, Subchannel_1, Subsubchannel_2 already were announced in the previous step).

When al channels have arrived, the connection status switches to STATUS CONNECTI ON_ESTABLI SHED.

Server information

Similar to reading client and channel data, server information can be queried with

unsigned int ts3client_getServerVariabl eAslnt(server Connecti onHandlerI D, flag, re-
sult);

ui nt 64 server Connecti onHandl er | D
Vi rtual Server Properties flag;
int* result;

unsigned int ts3client_getServerVariabl eAsU nt 64(server Connecti onHandl erI D, flag,
result);

ui nt 64 server Connecti onHandl er | D;
Vi rtual Server Properties flag;
ui nt 64* result;

unsigned int ts3client_getServerVariabl eAsString(serverConnectionHandl erl D, fl ag,
result);

ui nt 64 server Connecti onHandl er | D;
Vi rtual ServerProperties flag;
char** result;

» server Connecti onHandl er|I D
ID of the server connection handler on which the virtual server property is queried.
e clientlD
ID of the client whose property is queried.
« flag
Virtual server propery to query, see below.
e result

Address of avariable which receives the result value as int, uint64 or string, depending on which function is used. In case
of astring, memory must be released usingt s3cl i ent _f r eeMenor y, unless an error occured.

68

TeamSpeak 3 Client
SDK Developer Manual

The returned type uint64 is defined as __int64 on Windows and uint64_t on Linux and Mac OS X. See the header
publ i c_definitions. h. Thisfunctioniscurrently only used for the flag VI RTUALSERVER _UPTI ME.

Returns ERROR _ok on success, otherwise an error code as defined in publ i ¢c_errors. h. For the string version: If an
error has occured, the result string is uninitialized and must not be released.

The parameter f | ag specifies the type of queried information. It is defined by the enum Virtual ServerProperties:

enum Vi rtual Server Properties {
VI RTUALSERVER_UNI QUE_I| DENTI FI ER = 0, //avail abl e when

connected, can be used to identify this particular

//server installation

VI RTUALSERVER_NAME, //avail abl e and al ways up-to-date when connected
VI RTUALSERVER_WEL COVEMESSAGCE, /lavai | abl e when connected, not updated while connected
VI RTUALSERVER_PLATFORM // avai | abl e when connect ed
VI RTUALSERVER_VERSI ON, // avai | abl e when connect ed
VI RTUALSERVER_MAXCLI ENTS, /lonly avail abl e on request (=> request ServerVari ables), stores the
[/ maxi mum nunber of clients that may currently join the server
VI RTUALSERVER_PASSWORD, //not available to clients, the server password
VI RTUALSERVER_CLI ENTS_ONLI NE, /lonly avail abl e on request (=> requestServerVari abl es),
VI RTUALSERVER_CHANNELS_ ONLI NE, /lonly avail abl e on request (=> requestServerVari abl es),
VI RTUALSERVER_CREATED, // avai | abl e when connected, stores the tinme when the server was created

VI RTUALSERVER_UPTI ME, //only avail abl e

on request (=> requestServerVariables), the tine

//since the server was started
VI RTUALSERVER_CODEC_ENCRYPTI ON_MODE, //avail abl e and al ways up-to-date when connected

VI RTUALSERVER_ENDVMARKER,

* VI RTUALSERVER_UNI QUE_I DENTI FI ER

Unique ID for thisvirtual server. Stays the same after restarting the server application. Always available when connected.

* VI RTUALSERVER_NAME
Name of thisvirtual server. Always available when connected.

* VI RTUALSERVER WEL COVEMESSAGE

Optional welcome message sent to the client on login. This value should be queried by the client after connection has been

established, it is not updated afterwards.

* VI RTUALSERVER_PLATFCRM

Operating system used by this server. Always available when connected.

* VI RTUALSERVER_VERSI ON

Application version of this server. Always available when connected.

* VI RTUALSERVER_MAXCLI ENTS

Defines maximum number of clients which may connect to this server. Needs to be requested using

ts3client_request Server Vari abl es.
* VI RTUALSERVER_PASSWORD
Optional password of this server. Not available to clients.

* VI RTUALSERVER _CLI ENTS_ONLI NE

69

TeamSpeak 3 Client
SDK Developer Manual

VI RTUALSERVER_CHANNELS_ONLI NE

Number of clients and channels currently on this virtual server. Needs to be reguested using
ts3client _request Server Vari abl es.

e VI RTUALSERVER CREATED

Time when this virtual server was created. Always available when connected.
e VI RTUALSERVER UPTI MVE

Uptime of this virtual server. Needsto berequested usingt s3cl i ent _request Server Vari abl es.
* VI RTUALSERVER CODEC ENCRYPTI ON_MODE

Defines if voice data encryption is configured per channel, globally forced on or globally forced off for this
virtual server. The default behaviour is configure per channel, in this case modifying the channel property
CHANNEL _CODEC | S UNENCRYPTED defines voice data encryption of individual channels.

Virtual server encryption mode can be set to the following parameters:

enum CodecEncrypti onMbde {
CODEC_ENCRYPTI ON_PER_CHANNEL = O,
CODEC_ENCRYPTI ON_FORCED_OFF,
CODEC_ENCRYPTI ON_FORCED_ON,

}s

This property is always available when connected.

Example code checking the number of clients online, obviously an integer value:
int clientsOnline;

if(ts3client_getServerVariabl eAsl nt (scHandl er1 D, VI RTUALSERVER CLI ENTS_ONLI NE, &clientsOnline) == ERROR ok)
printf("There are % clients online\n", clientsOnline);

A client can request refreshing the server information with:
unsi gned int ts3client_requestServerVari abl es(server Connecti onHandl erl D) ;

ui nt 64 server Connecti onHandl er | D;

The following event informs the client when the requested information is available:
unsi gned int onServer Updat edEvent (server Connecti onHandl er1 D) ;

ui nt 64 server Connecti onHandl er | D;

70

TeamSpeak 3 Client
SDK Developer Manual

The following event notifies the client when virtual server information has been edited:

voi d onSer ver Edi t edEvent (server Connect i onHandl er | D, editerl D, edi t er Name,
edi terUni quel dentifier);

ui nt 64 server Connecti onHandl er | D;
anyl D editerlD;

const char* editerNaneg;
const char* editerUniqueldentifier;

* server Connecti onHandl erl D
ID of the server connection handler which virtual server information has been changed.
« editerlD
ID of the client who edited the information. If zero, the server isthe editor.
+ edi ter Nanme
Name of the client who edited the information.
e editerUniqueldentifier

Unique ID of the client who edited the information.

Interacting with the server

Interacting with the server means various actions, related to both channels and clients. Channels can be joined, created, edited,
deleted and subscribed. Clients can use text chat with other clients, be kicked or poked and move between channels.

All strings passed to and from the Client Lib need to be encoded in UTF-8 format.

Joining a channel

When a client logs on to a TeamSpeak 3 server, he will automatically join the channel with the “Default” flag, unless he
specified another channel int s3cl i ent _st art Connecti on. To have your own or another client switch to a certain
channel, call

unsi gned i nt ts3client_requestdient Move(server Connecti onHandl erl D, clientlD,
newChannel | D, password, returnCode);

ui nt 64 server Connecti onHandl er | D;
anyl D clientlD;

ui nt 64 newChannel | D;

const char* password;

const char* returnCode;

e server Connecti onHandl er| D

71

TeamSpeak 3 Client
SDK Developer Manual

ID of the server connection handler ID on which this action is requested.
e clientlD
ID of the client to move.
* newChannel I D
ID of the channel the client wantsto join.
e password
An optional password, required for password-protected channels. Pass an empty string if no password is given.
* returnCode
See return code documentation. Pass NULL if you do not need this feature.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

If the move was successful, one the following events will be called:

void onClient MoveEvent (server Connecti onHandl er1 D, clientlD, ol dChannellD, newChan-
nel 1D, visibility, noveMessage);

ui nt 64 server Connecti onHandl er | D;
anyl D clientlD;

ui nt 64 ol dChannel | D;

ui nt 64 newChannel | D;

int visibility;

const char* noveMessage;

» server Connecti onHandl erl D
ID of the server connection handler on which the action occured.
e clientlD
ID of the moved client.
e ol dChannel I D
ID of the old channdl left by the client.
* newChannel I D
ID of the new channel joined by the client.
e visibility
Defined in the enum Visibility

enum Visibility {

72

TeamSpeak 3 Client
SDK Developer Manual

ENTER VI SIBILITY = O,
RETAI N_VI SI BI LI TY,
LEAVE VI SI BI LI TY

e« ENTER VI SI BI LI TY
Client moved and entered visibility. Cannot happen on own client.
 RETAIN_VISIBILITY
Client moved between two known places. Can happen on own or other client.
 LEAVE_VI SIBILITY
Client moved out of our sight. Cannot happen on own client.
* noveMessage

When a client disconnects from the server, this includes the optional message set by the disconnecting client in
ts3client_stopConnecti on.

Example: Requesting to move the own client into channel ID 12 (not password-protected):

ts3client_requestdient Mve(scHandl erI D, ts3client_getdientlD(scHandlerl D), 12, "", NULL);

Now wait for the callback:

voi d ny_ond i ent MoveEvent (ui nt 64 scHandl erI D, anyl D clientlD,
ui nt 64 ol dChannel | D, uint 64 newChannel | D,
int visibility, const char* noveMessage) ({
/'l scHandlerID -> Server connection handler | D, same as above when requesting
/1 clientlD -> Om client ID, same as above when requesting
/1 oldChannel ID -> 1D of the channel the client has |eft
/1l newChannelID -> 12, as requested above
/] visibility -> One of ENTER VISIBILITY, RETAIN_VISIBILITY, LEAVE_VISIBILITY
/'l nmoveMessage -> Optional message set by disconnecting clients

If the move was initiated by another client, instead of onCl i ent Move the following event is called:

void onCient MoveMovedEvent (server Connecti onHandl er | D, clientlD, ol dChannel | D,
newChannel I D, visibility, noverlD, noverName, noverUni queldentifier, noveMessage);

ui nt 64 server Connecti onHandl er | D
anyl D clientlD;

ui nt 64 ol dChannel I D

ui nt 64 newChannel | D

int visibility;

anyl D nover | D,

const char* nover Nane;

const char* nover Uni quel dentifier;
const char* noveMessage;

73

TeamSpeak 3 Client
SDK Developer Manual

Like onCl i ent MoveEvent but with additional information about the client, which has initiated the move: nover | D
defines the ID, nover Nane the nickname and mover Uni quel denti fi er theunique ID of the client who initiated the
move. noveMessage contains a string giving the reason for the move.

If ol dChannel | Dis 0, the client has just connected to the server. If newChannel | Dis 0, the client disconnected. Both
values cannot be O at the sametime.

Creating a new channel

To create a channel, set the various channel variables using t s3cl i ent _set Channel Vari abl eAsl nt and
ts3client _set Channel Vari abl eAsSt ri ng. Pass zero as the channel 1D parameter.

Then flush the changes to the server by calling:

unsi gned int ts3client flushChannel Creati on(serverConnectionHandl erl D, channel Par -
entlD);

ui nt 64 server Connecti onHandl er | D;
ui nt 64 channel Par ent | D;

e server Connecti onHandl er| D
ID of the server connection handler to which the channel changes should be flushed.
e channel Parent| D

ID of the parent channel, if the new channel is to be created as subchannel. Pass zero if the channel should be created as
top-level channel.

Returns ERROR_ok on success, otherwise an error code asdefinedin publ i ¢_errors. h.

After flushing the changes to the server, the following event will be called on successful channel creation:

voi d onNewChannel Cr eat edEvent (server Connecti onHandl er1 D, channel | D, channel Parent| D,
i nvoker | D, invokerNane, invokerUniqueldentifier);

ui nt 64 server Connecti onHandl er | D

ui nt 64 channel | D;

ui nt 64 channel Parent | D;

anyl D i nvoker | D,

const char* invoker Nane;

const char* invokerUni quel dentifier;

* server Connecti onHandl er| D
ID of the server connection handler where the channel was created.

e« channel I D

74

TeamSpeak 3 Client
SDK Developer Manual

ID of the created channel. Channel 1Ds start with the value 1.

channel Parent | D

ID of the parent channel.

 invoker!| D

ID of the client who requested the creation. If zero, the request was initiated by the server.

* i nvoker Nanme

Name of the client who requested the creation. If requested by the server, the nameis empty.

i nvoker Uni quel dentifier

Unique ID of the client who requested the creation.

Example code to create a channel:

#defi ne CHECK_ERROR(x)

int createChannel (ui nt64 scHandl erl D, uint64 parent Channel | D, const char* nane,
const char* description,
int maxClients,
int sem perm

if((error = x)

int

unsigned int error;

/* Set channel
CHECK_ERROR(ts3cl i
CHECK_ERROR(ts3cl i
CHECK_ERROR(ts3cl i
CHECK_ERROR(ts3cl i
CHECK_ERROR(ts3cl i
CHECK_ERROR(ts3cl i
CHECK_ERROR(ts3cl i
CHECK_ERROR(ts3cl i
CHECK_ERROR(ts3cl i
CHECK_ERROR(ts3cl i
CHECK_ERROR(ts3cl i
CHECK_ERROR(ts3cl i

data, pass 0 as channel

ent _set Channel Vari
ent _set Channel Vari
ent _set Channel Vari
ent _set Channel Vari
ent _set Channel Vari
ent _set Channel Vari
ent _set Channel Vari
ent _set Channel Vari
ent _set Channel Vari
ent _set Channel Vari
ent _set Channel Vari
ent _set Channel Vari

/* Flush changes to server */

1= ERROR ok) { goto on_error;

fam | yMaxd i ents,

int default) {

ID */

abl eAsSt ri ng(scHandl er | D,
abl eAsSt ri ng(scHandl er | D,
abl eAsSt ri ng(scHandl er | D,
abl eAsSt ri ng(scHandl er | D,

abl eAsl nt (scHandl er | D,
abl eAsl nt (scHandl er | D,
abl eAsl nt (scHandl er | D,
abl eAsl nt (scHandl er | D,

abl eAsUl nt 64(scHandl er | D,

abl eAsl nt (scHandl er | D,
abl eAsl nt (scHandl er | D,
abl eAsl nt (scHandl er | D,

const char* password,
int order,

int codec,

elejejclejejcjoleNeloNe]

}

const char* topic,
int codecQality,
int perm

CHANNEL_NAME, nane));

CHANNEL_TOPI C, topic));

CHANNEL_DESCRI PTI ON, desc));
CHANNEL_PASSWORD, password));
CHANNEL_CCDEC, codec));

CHANNEL_CODEC _QUALI TY, codecQuality));
CHANNEL_MAXCLI ENTS, maxdients));
CHANNEL_MAXFAM LYCLI ENTS, fami | yMaxdients));
CHANNEL_CRDER, order));
CHANNEL_FLAG_PERVANENT, pern));
CHANNEL_FLAG_SEM _PERVANENT, semi perm));
CHANNEL_FLAG DEFAULT, default));

CHECK_ERROR(t s3client_fl ushChannel Creati on(scHandl erl D, parent Channel ID));

return 0; /* Success */

on_error:
printf("Error creating channel: %l\n", error);
return 1; /* Failure */

}

Deleting a channel

A channel can be removed with

unsigned int ts3client_request Channel Del et e(server Connecti onHandl erl D, channel | D,

force, returnCode);

75

TeamSpeak 3 Client
SDK Developer Manual

ui nt 64 server Connecti onHandl er | D
ui nt 64 channel | D,

int force;

const char* returnCode;

* server Connecti onHandl er| D

ID of the server connection handler on which the channel should be deleted.
« channel I D

The ID of the channel to be deleted.
» force

If 1, the channel will be deleted even when it is not empty. Clients within the deleted channel are transfered to the default
channel. Any contained subchannels are removed as well.

If O, the server will refuse to delete a channel that is not empty.
e returnCode
See return code documentation. Pass NULL if you do not need this feature.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

After the request has been sent to the server, the following event will be called:

voi d onDel Channel Event (server Connecti onHandl er|I D, channel I D, i nvoker| D, i nvoker Nane,
i nvoker Uni quel dentifier);

ui nt 64 server Connecti onHandl er | D;

ui nt 64 channel | D

anyl D i nvoker | D,

const char* invoker Nane;

const char* invokerUni queldentifier;

* server Connecti onHandl erl D

ID of the server connection handler on which the channel was del eted.
e channel I D

The ID of the deleted channel.
e invokerI D

The ID of the client who requested the deletion. If zero, the deletion was initiated by the server (for example automatic
deletion of empty non-permanent channels).

76

TeamSpeak 3 Client
SDK Developer Manual

e i nvoker Name
The name of the client who requested the deletion. Empty if requested by the server.
* i nvoker Uni quel dentifier

The unique ID of the client who requested the deletion.

Moving a channel

To move a channel to a new parent channel, call

unsigned int ts3client_requestChannel Move(server Connecti onHandl erl D, channel | D,
newChannel Parent | D, newChannel Order, returnCode);

ui nt 64 server Connecti onHandl er | D;
ui nt 64 channel | D,

ui nt 64 newChannel Parent | D;

ui nt 64 newChannel Or der;

const char* returnCode;

» server Connecti onHandl er| D
ID of the server connection handler on which the channel should be moved.
* channel I D
ID of the channel to be moved.
* newChannel Parent| D
ID of the parent channel where the moved channel isto be inserted as child. Use O to insert astop-level channel.
* newChannel O der

Channel order defining where the channel should be sorted under the new parent. Pass 0 to sort the channel right after the
parent. See the chapter Channel sorting for details.

* returnCode
See return code documentation. Pass NULL if you do not need this feature.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

After sending the request, the following event will be called if the move was successful:

voi d onChannel MoveEvent (server Connecti onHandl er1 D, channel I D, newChannel Parentl| D,
i nvoker | D, invokerNane, invokerUniqueldentifier);

ui nt 64 server Connecti onHandl er | D
ui nt 64 channel | D;

77

TeamSpeak 3 Client
SDK Developer Manual

ui nt 64 newChannel Parent | D;

anyl D i nvoker | D

const char* invoker Nane;

const char* invokerUni queldentifier;

» server Connecti onHandl er| D

ID of the server connection handler on which the channel was moved.
« channel I D

The ID of the moved channel.
* newChannel Parent| D

ID of the parent channel where the moved channel isinserted as child. O if inserted as top-level channel.
* invokerl D

The ID of the client who requested the move. If zero, the move was initiated by the server.
* i nvoker Nane

The name of the client who requested the move. Empty if requested by the server.
e i nvokerUni quel dentifier

The unique ID of the client who requested the move.

Text chat

In addition to voice chat, TeamSpeak 3 alows clients to communicate with text-chat. Valid targets can be a client, channel or
virtual server. Depending on the target, there are three functions to send text messages and one callback to receive them.

Sending
To send a private text message to a client:

unsi gned i nt ts3client_request SendPrivat eText Msg(server Connecti onHandl er|I D, nessage,
targetClientl D, returnCode);

ui nt 64 server Connecti onHandl er | D;
const char* nessage;

anyl D targetClientl D,

const char* returnCode;

* server Connecti onHandl er1 D
Id of the target server connection handler.

+ message

78

TeamSpeak 3 Client
SDK Developer Manual

String containing the text message
e targetdientID
Id of the target client.
* returnCode
See return code documentation. Pass NULL if you do not need this feature.

Returns ERROR _ok on success, otherwise an error code asdefinedinpubl i ¢_errors. h.

To send atext message to a channel:

unsi gned i nt ts3client_request SendChannel Text Msg(server Connecti onHandl erl D, nessage,
t ar get Channel I D, returnCode);

ui nt 64 server Connecti onHandl er| D
const char* nessage;

anyl D t arget Channel | D

const char* returnCode;

» server Connecti onHandl er| D
Id of the target server connection handler.
* nMessage
String containing the text message
* target Channel I D
Id of the target channel.
* returnCode
See return code documentation. Pass NULL if you do not need this feature.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

To send atext message to the virtual server:

unsi gned int ts3client_request SendServer Text Msg(server Connecti onHandl er| D, nessage,
r et ur nCode) ;

ui nt 64 server Connecti onHandl er | D;
const char* nessage;
const char* returnCode;

79

TeamSpeak 3 Client
SDK Developer Manual

* server Connecti onHandl erl D
Id of the target server connection handler.
* nmessage
String containing the text message
* returnCode
See return code documentation. Pass NULL if you do not need this feature.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

Example to send atext chat to aclient with ID 123;

const char *msg = "Hell o Teantpeak!";
anylD targetClientl D = 123;

if(ts3client_request SendPrivat eText Msg(scHandl erI D, nmsg, targetdient, NULL) != ERROR ok) {
/* Handl e error */

}
Receiving
The following event will be called when atext message is received:

voi d onText MessageEvent (server Connecti onHandl er1 D, targetMde, tolD, from D, from
Name, fromni queldentifier, nessage);

ui nt 64 server Connecti onHandl er | D
anyl D t ar get Mode;

anyl D tol D

anyl D fronml D,

const char* fromNane;

const char* fronlni quel dentifier;
const char* nessage;

e server Connecti onHandl er|I D
ID of the server connection handler from which the text message was sent.
» target Mode

Target mode of this text message. The value is defined by the enum TextM essageT argetM ode:

enum Text MessageTar get Mode {
Text MessageTar get _CLI ENT=1,
Text MessageTar get _ CHANNEL,
Text MessageTar get _SERVER,
Text MessageTar get _MAX

b
e« tolD

80

TeamSpeak 3 Client
SDK Developer Manual

Id of the target of the text message.
e fromD
Id of the client who sent the text message.
o fromName
Name of the client who sent the text message.
« fromni quel dentifier
Unique ID of the client who sent the text message.
* nmessage

String containing the text message.

Kicking clients
Clients can be forcefully removed from a channel or the whole server. To kick a client from a channel or server call:

unsi gned int ts3client_requestdientKi ckFronChannel (server Connecti onHandl erI D, cli -
ent| D, ki ckReason, returnCode);

ui nt 64 server Connecti onHandl er | D
anyl D clientlD

const char* ki ckReason;

const char* returnCode;

unsigned int ts3client _requestdientKickFrontServer(serverConnectionHandlerl D, cli-
ent| D, ki ckReason, returnCode);

ui nt 64 server Connecti onHandl er | D;
anyl D clientlD

const char* ki ckReason;

const char* returnCode;

* server Connecti onHandl erl D
Id of the target server connection.
e clientlD
The ID of the client to be kicked.
* ki ckReason
A short message explaining why the client is kicked from the channel or server.

e returnCode

81

TeamSpeak 3 Client
SDK Developer Manual

See return code documentation. Pass NULL if you do not need this feature.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

After successfully requesting a kick, one of the following events will be called:

voi d ond i ent Ki ckFr onChannel Event (server Connecti onHandl erI D, clientl D, ol dChannel I D,
newChannel I D, visibility, kickerlD, kickerNane, kickerUniqueldentifier, KkickMes-
sage) ;

ui nt 64 server Connecti onHandl er | D;
anyl D clientlD;

ui nt 64 ol dChannel I D,

ui nt 64 newChannel | D,

int visibility;

anyl D ki cker 1 D;

const char* ki cker Nane;

const char* ki ckerUni quel dentifier;
const char* ki ckMessage;

voi d ond i ent Ki ckFronter ver Event (server Connecti onHandl er1 D, clientlD, ol dChannellD,
newChannel I D, visibility, kickerlD, kickerNane, kickerUniqueldentifier, KkickMes-
sage) ;

ui nt 64 server Connecti onHandl er | D
anyl D clientlD;

ui nt 64 ol dChannel | D

ui nt 64 newChannel | D

int visibility;

anyl D ki cker 1 D;

const char* ki cker Nane;

const char* ki cker Uni quel dentifier;
const char* ki ckMessage;

* server Connecti onHandl erl D
ID of the server connection handler on which the client was kicked
e clientlD
ID of the kicked client.
» ol dChannel I D
ID of the channel from which the client has been kicked.
* newChannel I D

ID of the channel where the kicked client was moved to.

82

TeamSpeak 3 Client
SDK Developer Manual

e visibility

Describes if the moved client enters, retains or leaves visibility. See explanation of the enum Visibility for the function
onCl i ent MoveEvent .

When kicked from a server, visibility can be only LEAVE_VI Sl BI LI TY.
» kickerlD
ID of the client who requested the kick.
* ki cker Name
Name of the client who requested the kick.
e ki cker Uni quel dentifi er
Unique ID of the client who requested the kick.
» ki cker Message

Message giving the reason why the client has been kicked.

Channel subscriptions

Normally a user only sees other clients who are in the same channel. Clients joining or leaving other channels or changing
status are not displayed. To offer a way to get notifications about clients in other channels, a user can subscribe to other
channels. It would also be possible to always subscribe to all channels to get notifications about all clients on the server.

Subscriptions are meant to have a flexible way to balance bandwidth usage. On a crowded server limiting the number of
subscribed channelsis away to reduce network traffic. Also subscriptions allow to usage “ private” channels, whose members
cannot be seen by other users.

E Note
A client is automatically subscribed to the current channel.

To subscribeto alist of channels (zero-terminated array of channel IDs) call:

unsi gned int ts3client_request Channel Subscri be(server Connecti onHandl erl D, channel | -
DArray, returnCode);

ui nt 64 server Connecti onHandl er | D;
const ui nt64* channel | DArray;
const char* returnCode;

To unsubscribe from alist of channels (zero-terminated array of channel 1Ds) call:

unsi gned i nt ts3client_request Channel Unsubscri be(server Connecti onHandl er1 D, channel -
| DArray, returnCode);

ui nt 64 server Connecti onHandl er | D;
const ui nt64* channel | DArr ay;

83

TeamSpeak 3 Client
SDK Developer Manual

const char* returnCode;

To subscribe to all channels on the server cal:

unsi gned i nt ts3client_request Channel Subscri beAll (server Connecti onHandl erl D, return-
Code) ;

ui nt 64 server Connecti onHandl er | D;
const char* returnCode;

To unsubscribe from all channels on the server call:

unsigned int ts3client_request Channel Unsubscri beAl |l (server ConnectionHandl erI D, re-
t ur nCode) ;

ui nt 64 server Connecti onHandl er | D
const char* returnCode;

To check if a channel is currently subscribed, check the channel property CHANNEL FLAG ARE SUBSCRI BED with
ts3client _get Channel Vari abl eAsl nt :

int isSubscribed;

i f(ts3client_getChannel Vari abl eAsl nt (scHandl er|I D, channel | D, CHANNEL_FLAG ARE_SUBSCRI BED, &i sSubscri bed)
I'= ERROR_ok) {
/* Handle error */

}

The following event will be sent for each successfully subscribed channel:
voi d onChannel Subscri beEvent (server Connecti onHandl er| D, channel | D);

ui nt 64 server Connecti onHandl er | D;
ui nt 64 channel | D;

Provided for convinience, to mark the end of mulitple callsto onChannel Subscri beEvent when subscribing to several
channels, thisevent is called:

voi d onChannel Subscri beFi ni shedEvent (server Connecti onHandl er | D);

ui nt 64 server Connecti onHandl er | D

The following event will be sent for each successfully unsubscribed channel:
voi d onChannel Unsubscri beEvent (server Connecti onHandl erI D, channel I D);

ui nt 64 server Connecti onHandl er | D;

TeamSpeak 3 Client
SDK Developer Manual

ui nt 64 channel | D;

Similar like subscribing, this event is a convinience callback to mark the end of multiple calls to onChannel Unsub-
scri beEvent:

voi d onChannel Unsubscri beFi ni shedEvent (server Connecti onHandl er |1 D) ;

ui nt 64 server Connecti onHandl er | D;

Once a channel has been subscribed or unsubscribed, the event onCl i ent MoveSubscri pti onEvent issent for each
client in the subscribed channel. The event is not to be confused with onCl i ent MoveEvent , which is called for clients
actively switching channels.

void ondientMveSubscripti onEvent (serverConnectionHandl erI D, clientlD, ol dChan-
nel I D, newChannel I D, visibility);

ui nt 64 server Connecti onHandl er | D;
anyl D clientlD;
ui nt 64 ol dChannel | D;
ui nt 64 newChannel | D;
int visibility;
» server Connecti onHandl er1 D
The server connection handler ID for the server where the action occured.
e clientID
Theclient ID.
e ol dChannel I D
ID of the subscribed channel where the client left visibility.
* newChannel | D
ID of the subscribed channel where the client entered visibility.
e visibility
Defined in the enum Visibility

enum Visibility {
ENTER_VISIBILITY = O,
RETAI N_VI SI BI LI TY,
LEAVE_VI SI BI LI TY

b
e ENTER VI SIBI LI TY
Client entered visibility.

* LEAVE_VI SIBILITY

85

TeamSpeak 3 Client
SDK Developer Manual

Client |eft visibility.
* RETAIN.VISIBILITY

Does not occur with onClientM oveSubscriptionEvent.

Muting clients locally

Individual clients can belocally muted. Thisinformation is handled client-side only and not visibile to other clients. It mainly
serves asasort of individual "ban" or "ignore" feature, where users can decide not to listen to certain clients anymore.

When a client becomes muted, he will no longer be heard by the muter. Also the TeamSpeak 3 server will stop sending voice
packets.

The mute state is not visible to the muted client nor to other clients. It is only available to the muting client by checking the
CLI ENT_I S_MJTED client property.

To mute one or more clients:

unsi gned int ts3client_requestMuted ients(serverConnectionHandl erI D, clientlDArray,
r et ur nCode) ;

ui nt 64 server Connecti onHandl er | D;
const anyl D* clientlDArray;
const char* returnCode;

To unmute one or more clients:

unsigned int ts3client_requestUnnutedients(serverConnectionHandl erl D, clientl DAr-
ray, returnCode);

ui nt 64 server Connecti onHandl er | D;
const anyl D* clientl|DArray;
const char* returnCode;

» server Connecti onHandl er| D
ID of the server connection handle on which the client should be locally (unymuted
e clientlDArray
NULL-terminated array of client IDs.
* returnCode
See return code documentation. Pass NULL if you do not need this feature.
Returns ERROR _ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

Example to mute two clients:

86

TeamSpeak 3 Client
SDK Developer Manual

anylD clientl DArray[3]; // List of two clients plus term nating zero
clientlDArray[0] = 123; // First client IDto nute

clientl DArray[1] 456; // Second client IDto mute

clientl DArray[2] 0; /! Term nating zero

if(ts3client_requestMuted ients(scHandl erID, clientlDArray) != ERROR ok) /* Mute clients */
printf("Error muting clients: %\n", error);

To check if aclient is currently muted, query the CLI ENT_I S_MJTED client property:

int clientlsMited;
if(ts3client_getCientVariabl eAslnt(scHandlerl D, clientlD, CLIENT_IS MJTED, &clientlsMited) != ERROR o0k)
printf("Error querying client nmuted state\n);

Custom encryption

As an optional feature, the TeamSpeak 3 SDK allows users to implement custom encryption and decryption for all network
traffic. Custom encryption replaces the default AES encryption implemented by the TeamSpeak 3 SDK. A possible reason to
apply own encryption might be to make ones TeamSpeak 3 client/server incompatible to other SDK implementations.

Custom encryption must be implemented the same way in both the client and server.

E Note
If you do not want to use this feature, just don't implement the two encryption callbacks.

To encrypt outgoing data, implement the callback:
voi d onCust onPacket Encrypt Event (dat aToSend, sizeO Data);

char** dataToSend;
unsi gned int* sizeO Dat a;

» dataToSend
Pointer to an array with the outgoing data to be encrypted.

Apply your custom encryption to the data array. If the encrypted datais smaller than sizeOf Data, write your encrypted data
into the existing memory of dataToSend. If your encrypted data is larger, you need to allocate memory and redirect the
pointer dataToSend. Y ou need to take care of freeing your own allocated memory yourself. The memory allocated by the
SDK, to which dataToSend is originally pointing to, must not be freed.

e sizeOf Dat a

Pointer to an integer value containing the size of the data array.

To decrypt incoming data, implement the callback:
voi d onCust onPacket Decr ypt Event (dat aRecei ved, dat aRecei vedSi ze) ;

char** dat aRecei ved;
unsi gned int* dat aRecei vedSi ze;

87

TeamSpeak 3 Client
SDK Developer Manual

+ dat aRecei ved
Pointer to an array with the received data to be decrypted.

Apply your custom decryptionto thedataarray. If the decrypted datais smaller than dataReceivedSize, write your decrypted
datainto the existing memory of dataReceived. If your decrypted datais larger, you need to allocate memory and redirect
the pointer dataReceived. Y ou need to take care of freeing your own allocated memory yourself. The memory allocated by
the SDK, to which dataReceived is originally pointing to, must not be freed.

» dat aRecei vedSi ze
Pointer to an integer value containing the size of the data array.

Example code implementing a very simple X OR custom encryption and decryption (also see the SDK examples):

voi d onCust onPacket Encrypt Event (char** dat aToSend, unsigned int* sizeOData) {
unsigned int i;
for(i =0; i < *sizeOData; i++) {
(*dataToSend)[i] ~= CUSTOM CRYPT_KEY;

}
}

voi d onCust onPacket Decrypt Event (char** dat aRecei ved, unsigned int* dataRecei vedSi ze) {
unsigned int i;
for(i = 0; i < *dataReceivedSi ze; i++) {
(*dat aRecei ved)[i] ~= CUSTOM CRYPT_KEY;
}
}

Custom passwords

The TeamSpeak SDK has the optional ability to do custom password handling. This makes it possible to allow people on the
server (or channels) with passwords that are checked against outside datasources, like LDAP or other databases.

To implement custom password, both server and client need to add custom callbacks, which will be spontaneously called
whenever a password check is donein TeamSpeak. The SDK developer can implement own checks to validate the password
instead of using the TeamSpeak built-in mechanism.

Both Server and Client Lib can implement the following callback to encrypt a user password. This function is called in the
Client Lib when a channel password is set.

This can be used to hash the password in the same way it is hashed in the outside data store. Or just copy the password to
send the clear text to the server.

voi d ond i ent Passwor dEncrypt (serverl D, plaintext, encryptedText, encryptedTextByte-
Si ze);

ui nt 64 serverl D,

const char* plaintext;
char* encrypt edText;

i nt encrypt edText ByteSi ze;

88

TeamSpeak 3 Client
SDK Developer Manual

* serverlD

ID of the server the password call occured
e pl ai nt ext

The plaintext password
e encrypt edText

Fill with your custom encrypted password. Must be a O-terminated string with a size not larger than encr ypt ed-
Text Byt eSi ze.

e encrypt edText Byt eSi ze

Size of the buffer pointed to by encr ypt edText .

Other events

When aclient starts or stops talking, atalk status change event is sent by the server:

voi d onTal kSt at usChangeEvent (server Connecti onHandl erI D, status, isReceivedwi sper,
clientID);

ui nt 64 server Connecti onHandl er | D
i nt status;

i nt i sRecei vedWi sper;

anyl D clientlD;

e server Connecti onHandl er| D
ID of the server connection handler on which the event occured.
* status

Possible return values are defined by the enum TalkStatus:

enum Tal kSt at us {
STATUS_NOT_TALKI NG = 0,
STATUS_TALKI NG = 1,
STATUS_TALKI NG_WHI LE_DI SABLED = 2,

}s

STATUS TALKI NG and STATUS NOT_TALKI NG are triggered everytime a client starts or stops taking.
STATUS TALKI NG WHI LE_DI SABLED istriggered only if the microphoneis muted. A client application might usethis
to implement a mechanism warning the user he is talking while not sending to the server or just ignore this value.

* i sRecei vedWhi sper
1if the talk event was caused by whispering, O if caused by normal talking.
e clientlD

ID of the client who started or stopped talking.

89

TeamSpeak 3 Client
SDK Developer Manual

If aclient drops his connection, atimeout event is announced by the server:

void ondientMveTi meout Event (server Connecti onHandl erI D, clientlD, ol dChannellD,
newChannel I D, visibility, tineoutMssage);

ui nt 64 server Connecti onHandl er | D;
anylD clientlD;

ui nt 64 ol dChannel | D,

ui nt 64 newChannel | D,

int visibility;

const char* tineout Message;

* server Connecti onHandl er| D

ID of the server connection handler on which the event occured.
e clientlD

ID of the moved client.
* ol dChannel I D

ID of the channel the leaving client was previously member of.
* newChannel I D

0, asclient isleaving.
e visibility

Always LEAVE_VI Sl BI LI TY.
e tineout Message

Optiona message giving the reason for the timeout. UTF-8 encoded.

When the description of a channel was edited, the following event is called:
voi d onChannel Descri pti onUpdat eEvent (server Connecti onHandl erI D, channel | D);

ui nt 64 server Connecti onHandl er | D;
ui nt 64 channel | D;

e server Connecti onHandl er| D
ID of the server connection handler on which the event occured.

e shut dowmnMessage

90

TeamSpeak 3 Client
SDK Developer Manual

ID of the channel with the edited description.

The new description can be queried with ts3client _get Channel Vari abl eAsSt ri ng(channel | D,
CHANNEL _DESCRI PTI ON) .

The following event tells the client that the specified channel has been modified. The GUI should fetch the channel datawith
t s3cli ent _get Channel Vari abl eAsl nt and t s3cl i ent _get Channel Vari abl eAsSt ri ng and update the
channel display.

voi d onUpdat eChannel Event (server Connecti onHandl er| D, channel I D);

ui nt 64 server Connecti onHandl er | D;
ui nt 64 channel | D;

* server Connecti onHandl er1 D
ID of the server connection handler on which the event occured.
e channel I D

ID of the updated channel.

The following event is called when a channel password was modified. The GUI might remember previously entered channel
passwords, so this callback announces the stored password might be invalid.

voi d onChannel Passwor dChangedEvent (server Connecti onHandl er1 D, channel I D);

ui nt 64 server Connecti onHandl er | D;
ui nt 64 channel | D;

e server Connecti onHandl er| D
ID of the server connection handler on which the event occured.
e« channel I D

ID of the channel with the changed password.

Miscellaneous functions

Memory dynamically allocated in the Client Lib needs to be released with:
unsi gned int ts3client_freeMenory(pointer);

voi d* pointer;

91

TeamSpeak 3 Client
SDK Developer Manual

e pointer
Address of the variable to be released.

Example:
char* version;

if(ts3client_getdientlLibVersion(&ersion) == ERROR ok) {
printf("Version: %\n", version);
ts3client_freeMenory(version);

E | mportant

Memory must not be released if the function, which dynamically allocated the memory, returned an error. In that
case, the result is undefined and not initialized, so freeing the memory might crash the application.

Instead of sending the sound through the network, it can be routed directly through the playback device, so the user will get
immediate audible feedback when for example configuring some sound settings.

unsi gned int ts3client_setlLocal Test Mode(server Connecti onHandl erl D, status);

ui nt 64 server Connecti onHandl er| D;
i nt st atus;

* server Connecti onHandl erl D

ID of the server connection handler for which the local test mode should be enabled or disabled.
e status

Pass 1 to enable local test mode, O to disable.

Returns ERROR_ok on success, otherwise an error code asdefined inpubl i ¢_errors. h.

With the delayed temporary channel deletion feature, users can define after how many seconds a temporary chan-
nel will be deleted after the last client has left the channel. The delay is defined by setting the channel variable
CHANNEL _DELETE_DELAY. Thisvariable can be set and queried as described in channel information.

To query the time in seconds since the last client has left atemporary channel, call:

unsi gned i nt ts3client_get Channel Enpt ySecs(server Connecti onHandl erI D, channel I D, re-
sult);

ui nt 64 server Connecti onHandl er | D;
ui nt 64 channel | D;
int* result;

92

TeamSpeak 3 Client
SDK Developer Manual

* server Connecti onHandl erl D

ID of the server connection handler on which the time should be queried.
* channel I D

ID of the channel to query.
* result

Address of avariable that receives the time in seconds.

Filetransfer

The TeamSpeak SDK includes the ability to support filetransfer, like the regular TeamSpeak server and client offer. The
Server can function as afile storage, which can be accessed by Clients who can up- and download files. Files are stored on
the filesystem where the server is running.

Ingenerd, clientscaninitiate filetransfer actionslike uploading or downloading afile, requesting file information (size, name,
path etc.), list filesin adirectory and so on. The functionsto call these actions are explained in detail below. In addition to the
functions actively called, there are filetransfer related callbacks which are triggered when the server returned the requested
information (e.g. list of filesin adirectory).

Each transfer isidentified by at r ansf er | D, which is passed to most filetransfer functions. Transfer IDs are unique during
the time of the transfer, but may be reused again some time after the previous transfer with the same ID has finished.

Files are organized on the server inside channels (identified by their channel | D. The top-level directory in each channel
is“/". Subdirectories in each channel may exist and are defined with a path of the form “/dirl/dir2”. Subdirectories are op-
tional and need to be created witht s3cl i ent _r equest Cr eat eDi r ect or y, the channel root directory always exists
by default.

Query information

The following functions allow to query information about afile transfer identified by itst r ansf er | D.
Query the file name of the specified transfer:
unsi gned int ts3client_getTransferFil eNane(transferl D, result);

anyl D transferl D
char** result;

e transferlD
ID of the filetransfer we want to query.
e result

Points to a C string containing the file name. Remember to call t s3cl i ent _f r eeMenor y to release the string, which
isdynamically allocated in the clientlib.

93

TeamSpeak 3 Client
SDK Developer Manual

Query the file path of the specified transfer:
unsigned int ts3client_getTransferFilePath(transferlD, result);

anyl D transferl D,
char** result;

e« transferl D
ID of the filetransfer we want to query.
e result

Points to a C string containing the file path. Remember to call t s3cl i ent _freeMenory to release the string, which
is dynamically alocated in the clientlib.

Query the remote path on the server of the specified transfer:
unsigned int ts3client_getTransferFil eRenotePath(transferl D, result);

anyl D transferl D
char** result;

e transferlD
ID of the filetransfer we want to query.
* result

Points to a C string containing the remote path on the server. Remember to call t s3cl i ent _freeMenory to release
the string, which is dynamically allocated in the clientlib.

Query thefile size of the specified transfer:
unsigned int ts3client_getTransferFil eSize(transferlD, result);

anyl D transferl D
ui nt 64* result;

e transferlD
ID of the filetransfer we want to query.
e result

File size of the transfer.

94

TeamSpeak 3 Client
SDK Developer Manual

Query the currently transferred file size of the queried transfer:
unsigned int ts3client_getTransferFileSi zeDone(transferID, result);

anyl D transferl D
ui nt 64* result;

e transferlD
ID of the filetransfer we want to query.
e result

Already transferred size of the transfer.

Query if the specified transfer is an upload or download:
unsigned int ts3client _isTransferSender(transferlD, result);

anyl D transferl D
int* result;

e« transferl D
ID of thefiletransfer we want to query.
e result

1 == upload, 0 == download

Query the status of the specified transfer:
unsigned int ts3client_getTransferStatus(transferlD, result);

anyl D transferl D
int* result;

e transferlD
ID of the filetransfer we want to query.
e result

Current status of the file transfer, specified by the struct Fi | eTr ansf er St at e:

95

TeamSpeak 3 Client
SDK Developer Manual

enum Fi |l eTransferState {
FI LETRANSFER_| NI TI ALI SING = O,
FI LETRANSFER_ACTI VE,
FI LETRANSFER_FI NI SHED,

Query the current speed of the specified transfer:
unsi gned int ts3client_getCurrent TransferSpeed(transferl D, result);

anyl D transferl D
float* result;

e transferl D
ID of the filetransfer we want to query.
* result

Currently measured speed of the file transfer.

Query the average speed of the specified transfer:
unsi gned int ts3client_getAverageTransferSpeed(transferl D, result);

anyl D transferl D
float* result;

e transferlD
ID of the filetransfer we want to query.
e result

Average speed of thefile transfer.

Query the time the specified transfer has used:
unsi gned int ts3client_getTransferRunTine(transferlD, result);

anyl D transferl D
ui nt 64* result;

e transferl D

96

TeamSpeak 3 Client
SDK Developer Manual

ID of the filetransfer we want to query.
* result

Time the transfer has used.

Initiate transfers

The following functions implement the core functionality of filetransfers. They initiate new up- and downloads, request file
info, delete and rename files, create directories, list directories etc.

Request uploading alocal file to the server:

unsigned int ts3client_sendFile(serverConnectionHandl erl D, channel D, channel PW
file, overwite, resune, sourceDirectory, result, returnCode);

ui nt 64 server Connecti onHandl er | D;
ui nt 64 channel | D,

const char* channel PW

const char* file;

int overwite;

int resumne;

const char* sourceDirectory;

anyl D* result;

const char* returnCode;

* server Connecti onHandl er| D
ID of the virtual server thefile transfer operation will be requested.
e channel I D
Target channel ID in which the file should be uploaded.
« channel PW
Optional channel password. Pass empty string if unused.
o file
Filename of the local file, which is to be uploaded.
e overwite
1 == overwriteremotefileif it exists, 0 = do not overwrite (operation will abort if remote file exists)
* resume
If we have a previously halted transfer: 1 = resume, O = restart transfer

e sourceDirectory

97

TeamSpeak 3 Client
SDK Developer Manual

Local directory where the file to upload is located.
* result

Pointer to memory where the transferlD will be stored, if the transfer has been started successfully (when this function
returns ERROR_0Kk).

* returnCode
String containing the return code if it has been set by the Client Lib function call which caused this error event.

See return code documentation.

Request downloading afile from the server:

unsi gned int ts3client_requestFile(serverConnectionHandl erl D, channel I D, channel PW
file, overwite, resunme, destinationDirectory, result, returnCode);

ui nt 64 server Connecti onHandl er | D;
ui nt 64 channel | D,

const char* channel PW

const char* file;

int overwite;

int resumne;

const char* destinationDirectory;
anyl D* result;

const char* returnCode;

* server Connecti onHandl erl D

ID of the virtual server thefile transfer operation will be requested.
* channel I D

Remote channel 1D from which the file should be downloaded.
* channel PW

Optional channel password. Pass empty string if unused.
o file

Filename of the remote file, which is to be downloaded.
e overwite

1 ==overwritelocal fileif it exists, 0 = do not overwrite (operation will abort if local file exists)
e resune

If we have a previously halted transfer: 1 = resume, O = restart transfer

98

TeamSpeak 3 Client
SDK Developer Manual

» destinationDirectory
Local target directory name where the download file should be saved.
* result

Pointer to memory where the transferlD will be stored, if the transfer has been started successfully (when this function
returns ERROR_ok).

* returnCode
String containing the return code if it has been set by the Client Lib function call which caused this error event.

See return code documentation.

Pause atransfer, specified by itst r ansf er | D

unsigned int ts3client_haltTransfer(serverConnectionHandl erI D, transferlD, delete-
Unfi ni shedFil e, returnCode);

ui nt 64 server Connecti onHandl er | D;
anyl D transferl D

i nt del et eUnfi ni shedFil e;

const char* returnCode;

» server ConnectionHandl er| D
ID of the virtual server thefile transfer operation will be requested.
e transferlD
ID of the transfer that should be halted.
* del eteUnfini shedFil e
1 = delete the halted file, 0 = do not deleted halted file
* returnCode
String containing the return code if it has been set by the Client Lib function call which caused this error event.

See return code documentation.

Query list of filesin adirectory. The answer from the server will trigger theonFi | eLi st Event and onFi | eLi st Fi n-
i shedEvent callbackswith the requested information.

unsigned int ts3client_requestFileList(serverConnectionHandl erl D, channell D, chan-
nel PW path, returnCode);

ui nt 64 server Connecti onHandl er | D

99

TeamSpeak 3 Client
SDK Developer Manual

ui nt 64 channel | D,
const char* channel PW
const char* path;
const char* returnCode;

» server Connecti onHandl er| D
ID of the virtual server thefile transfer operation will be requested.
« channel I D
Remote channel ID, from which we want to query thefilelist.
* channel PW
Optional channel password. Pass empty string if unused.
* path
Path inside the channel, defining the subdirectory. Top level pathis*“/”
e returnCode
String containing the return code if it has been set by the Client Lib function call which caused this error event.

See return code documentation.

Query information of a specified file. The answer from the server will trigger the onFi | el nf oEvent callback with the
requested information.

unsigned int ts3client_requestFilelnfo(serverConnectionHandl erl D, channellD, chan-
nel PW file, returnCode);

ui nt 64 server Connecti onHandl er | D;
ui nt 64 channel | D

const char* channel PW

const char* file;

const char* returnCode;

» server ConnectionHandl er| D

ID of the virtual server thefile transfer operation will be requested.
* channel I D

Remote channel 1D, from which we want to query the fileinfo.
* channel PW

Optional channel password. Pass empty string if unused.

100

TeamSpeak 3 Client
SDK Developer Manual

« file

File name we want to request info from, needs to include the full path within the channel, e.g. “/file” for atop-level file
or “/dird/dir2/file” for afile located in a subdirectory.

* returnCode
String containing the return code if it has been set by the Client Lib function call which caused this error event.

See return code documentation.

Request deleting one or more remote files on the server:

unsi gned i nt ts3client_requestDel eteFil e(serverConnecti onHandl erl D, channel I D, chan-
nel PW file, returnCode);

ui nt 64 server Connecti onHandl er | D;
ui nt 64 channel | D,

const char* channel PW

const char** file;

const char* returnCode;

* server Connecti onHandl er| D
ID of the virtual server thefile transfer operation will be requested.
* channel I D
Remote channel 1D, in which we want to delete the files.
» channel PW
Optional channel password. Pass empty string if unused.
- file

List of fileswe request to delete. Array must be NULL-terminated. The file names need to include the full path within the
channdl, e.g. “/file’ for atop-level file or “/dirl/dir2/file” for afile located in a subdirectory.

» returnCode
String containing the return code if it has been set by the Client Lib function call which caused this error event.

See return code documentation.

Request creating a directory:

unsi gned int ts3client_requestCreateD rectory(serverConnectionHandl erl D, channel | D,
channel PW directoryPath, returnCode);

ui nt 64 server Connecti onHandl er| D

101

TeamSpeak 3 Client
SDK Developer Manual

ui nt 64 channel | D,

const char* channel PW
const char* directoryPat h;
const char* returnCode;

* server Connecti onHandl er | D
ID of the virtual server thefile transfer operation will be requested.
* channel I D
Remote channel ID, in which we want to create the directory.
* channel PW
Optional channel password. Pass empty string if unused.
e file

Name of the directory to create. The directory name needs to include the full path within the channel, e.g. “/file” for atop-
level file or “/dirl/dir2/file” for afile located in a subdirectory.

* returnCode
String containing the return code if it has been set by the Client Lib function call which caused this error event.

See return code documentation.

Request renaming or moving afile. If the source and target channels and paths are the same, the file will simply be renamed.

unsi gned int ts3client_request RenaneFil e(server Connecti onHandl er1 D, fronChannel | D,
fronChannel PW t oChannel I D, toChannel PW ol dFile, newFile, returnCode);

ui nt 64 server Connecti onHandl er | D;
ui nt 64 frontChannel | D

const char* frontChannel PW

ui nt 64 toChannel | D

const char* toChannel PW

const char* ol dFil e;

const char* newril e;

const char* returnCode;

e server Connecti onHandl er| D
ID of the virtual server thefile transfer operation will be requested.
e fronChannel | D

Source channel 1D, in which we want to rename the file.

102

TeamSpeak 3 Client
SDK Developer Manual

* fronmChannel PW
Optional source channel password. Pass empty string if unused.
* toChannel I D

Target channel 1D, to which we want to move the file. If the file should not be moved to another channel, this parameter
should be equal to f r ontChannel | D.

* toChannel PW
Optional target channel password. Pass empty string if unused.
« oldFile

Old name of the file. The file name needs to include the full path within the channel, e.g. “/file” for atop-level file or “/
dirl/dir2/file” for afilelocated in a subdirectory.

e newrile

Target name of the directory to create. The directory name need to include the full path within the channel, e.g. “/file” for
atop-level file or “/dirLl/dir2/file” for afile located in a subdirectory.

To move files to another subdirectory in the same channel without renaming the file, f r omChannel | D has to be equal
tot oChannel | D, keep the file name itself but just change the path.

» returnCode
String containing the return code if it has been set by the Client Lib function call which caused this error event.

See return code documentation.

Speed limits

The TeamSpeak SDK offers the possibility to control and finetune transfer speed limits. These limits can be applied to the
complete server, specific virtual servers or for each individual transfer. By default the transfer speed is unlimited. Every file
transfer should at least have a minimum speed limit of 5kb/s.

Neither the TeamSpeak client nor server will store any of those values. When used, they'll have to be set at each client start
to be considered permanent.

To set the upload speed limit for al virtual serversin bytes/s:
unsigned int ts3client_setlnstanceSpeedLimtUp(newLinit);

uint64 newLinmt;

To set the download speed limit for al virtual serversin bytes/s:
unsi gned int ts3client_setlnstanceSpeedLi nitDown(newlinit);

uint64 newLinmt;

103

TeamSpeak 3 Client
SDK Developer Manual

To get the upload speed limit for all virtual serversin bytes/s:
unsi gned int ts3client_getlnstanceSpeedLimtUp(linit);

uint64* limt;

To get the download speed limit for all virtual serversin bytes/s:
unsigned int ts3client_getlnstanceSpeedLi mtDown(limt);

uinted* limt;

To set the upload speed limit for the specified virtual server in bytes/s:

unsi gned i nt
ts3client_set Server Connecti onHandl er SpeedLi ni t Up(server Connecti onHandl er1 D, newLi m
it);

ui nt 64 server Connecti onHandl er | D
uint64 newLint;

To set the download speed limit for the specified virtual server in bytes/s:

unsi gned i nt
ts3client _set Server Connecti onHandl er SpeedLi nmi t Down(ser ver Connect i onHandl er | D,
newLinmit);

ui nt 64 server Connecti onHandl er | D;
uint64 newLint;

To get the upload speed limit for the specified virtual server in bytes/s:

unsi gned i nt
t s3cli ent _get Server Connect i onHandl er SpeedLi i t Up(server Connecti onHandlerI D, linit);

ui nt 64 server Connecti onHandl er | D;
uint64* limt;

To get the download speed limit for the specified virtual server in bytes/s:

unsi gned i nt
ts3client _get Server Connecti onHandl er SpeedLi ni t Down(server Connecti onHandl erI D, |im
it);

ui nt 64 server Connecti onHandl er | D;
uinted* limt;

104

TeamSpeak 3 Client
SDK Developer Manual

To set the up- or download speed limit for the specified file transfer in bytes/s. Uset s3cl i ent _i sTr ansf er Sender
to query if the transfer is an up- or download.

unsigned int ts3client_setTransferSpeedLimt(transferl D, newLinit);

anyl D transferl D
uint64 newLint;

To get the speed limit for the specified file transfer in byted/s:
unsigned int ts3client_getTransferSpeedLimt(transferlD, limt);

anyl D transferl D
uinte4* linmt;

Callbacks

This event is called when afile transfer, triggered by t s3cl i ent _sendFi |l e ort s3cl i ent _request Fi | e hasfin-
ished or aborted with an error.

voi d onFileTransferStatusEvent(transferl D, status, statusMessage, renotefileSize,
server Connecti onHandl er 1 D) ;

anyl D transferl D

unsi gned int status;

const char* statusMessage;
uint64 renotefil eSize;

ui nt 64 server Connecti onHandl er | D;

e transferlD

ID of thetransfer. ThisID wasreturned by thecall tot s3cl i ent _sendFi |l e ort s3cl i ent _request Fi | e which
triggered this event.

e status
Indicates how and why the transfer has finished:
* ERROR file_transfer_conplete
Transfer completed successfully.
« ERROR file_transfer_cancel ed

Transfer was hated by acall tot s3cl i ent _hal t Transfer.

105

TeamSpeak 3 Client
SDK Developer Manual

« ERROR file_transfer_interrupted
An error occured, transfer was stopped for various reasons (network error etc.)
* ERROR file_transfer_reset

Transfer was reset. This can happen if the remote file has changed (another user uploaded another file under the same
channel 1D, path and file name).

e statusMessage

Status text message for averbose display of the st at us parameter.
* remotefil eSi ze

Remote size of the file on the server.
» server Connecti onHandl er|I D

ID of the virtual server on which thefile list was requested.

Callback containing the reply by the server on ts3client_requestFileList. There event is called for every file in the specified
path. After thelast file, onFi | eLi st Fi ni shed will indicate the end of the list.

voi d onFil eLi st Event (server Connecti onHandl erI D, channel I D, path, nane, size, date-
time, type, inconpletesize, returnCode);

ui nt 64 server Connecti onHandl er| D
ui nt 64 channel | D

const char* path;

const char* nane;

ui nt 64 si ze;

ui nt 64 datetine;

int type;

ui nt 64 i nconpl et esi ze;

const char* returnCode;

* server Connecti onHandl erl D
ID of the virtual server on which thefile list was requested.
* channel I D
ID of the channel which file list was requested.
e path
Subdirectory inside the channel for which the file list was requested. “/” indicates the root directory is listed.

* nane

106

TeamSpeak 3 Client
SDK Developer Manual

File name.
e size

Filesize
* datetine

File date (Unix time in seconds)
* type

Indicatesif thisentry isadirectory or afile. Typeis specified as:

enum {
Fil eLi st Type_Directory = 0,
Fi | eLi st Type_File,

}

e inconpl et esi ze
If thefileis currently still being transferred, this indicates the currently transferred file size.
* returnCode

String containing the return codeif it hasbeen setby t s3cl i ent _request Fi | eLi st which triggered this event.

Callback indicating the end of an incoming filelist, seeonFi | eLi st .
voi d onFil eLi st Fi ni shedEvent (server Connecti onHandl erl D, channel I D, path);

ui nt 64 server Connecti onHandl er | D;
ui nt 64 channel | D;
const char* path;

» server Connecti onHandl erl D

ID of the virtual server on which thefile list was requested.
e channel I D

If of the channel which files have been listed.
e path

Path within the channel which files have been listed.

Callback containing the reply by the server for ts3client_requestFilelnfo:

voi d onFi |l el nfoEvent (server Connecti onHandl erI D, channel | D, nane, size, datetine);

107

TeamSpeak 3 Client
SDK Developer Manual

ui nt 64 server Connecti onHandl er | D
ui nt 64 channel | D,

const char* nane;

ui nt 64 si ze;

ui nt 64 datetine;

* server Connecti onHandl er| D
ID of the virtual server on which the file info was requested.
* channel I D
If of the channel in which the fileislocated.
* nane
File name including the path within the channel in which the fileis located.
* size
Filesize
* datetinme

File date (Unix time in seconds)

FAQ

* How to implement Push-To-Tak?
* How to adjust the volume?

* How to talk across channels?

How to implement Push-To-Talk?

Push-To-Talk should be implemented by toggling the client variable CLI ENT_| NPUT_DEACTI VATED using the function
ts3client_setdientSel fVariabl eAsl nt. The variable can be set to the following values (see the enum Input-
DeactivationStatusin publ i ¢_defi ni ti ons. h):

* | NPUT_ACTI VE
* | NPUT_DEACTI VATED
For Push-To-Tak toggle between | NPUT_ACTI VE (talking) and | NPUT_DEACTI VATED (not talking).

Example code:

unsigned int error;
bool shoul dTal k;

108

TeamSpeak 3 Client
SDK Developer Manual

shoul dTal k = i sPushToTal kButtonPressed(); // Your key detection inplenmentation
if((error = ts3client_setCientSelfVariabl eAsl nt (scHandl er1 D, CLI ENT_I NPUT_DEACTI VATED,
shoul dTal k ? | NPUT_ACTI VE : | NPUT_DEACTI VATED))
I'= ERROR_ok) {
char* errorMsg;
if(ts3client_getErrorMessage(error, &errorMg) != ERROR ok) {
printf("Error toggling push-to-talk: %\n", errorMsg);
ts3client_freeMenory(errorMsg);

}
return;
}
if(ts3client_flushdientSelfUpdates(scHandl erl D, NULL) != ERROR ok) {
char* errorMsg;
if(ts3client_getErrorMessage(error, &errorMg) != ERROR ok) {
printf("Error flushing after toggling push-to-talk: %\n", errorMsg);
ts3client_freeMenory(errorMsg);
}
}

It is not necessary to close and reopen the capture device to implement Push-To-Talk.

Basically it would be possible to toggle CLIENT | NPUT_MJTED as well, but the advantage of
CLI ENT_I NPUT_DEACTI VATED isthat the change is not propagated to the server and other connected clients, thus saving
network traffic. CL1 ENT_| NPUT_MUJTED should instead be used for manually muting the microphone when using Voice
Activity Detection instead of Push-To-Talk.

If you need to query the current muted state, uset s3cl i ent _get C i ent Sel f Vari abl eAslnt:
int hardwareStatus, deactivated, mnuted;

if(ts3client_getdientSelfVariabl eAsl nt(scHandl erl D, CLI ENT_I NPUT_HARDWARE,
&har dwar eSt at us) ! = ERROR ok) {
/* Handl e error */

}
if(ts3client_getdientSelfVariabl eAslnt(scHandl erl D, CLI ENT_I NPUT_DEACTI VATED,
&deactivated) != ERROR ok) {
/* Handl e error */

}
if(ts3client_getdientSelfVariabl eAslnt(scHandl erl D, CLI ENT_I NPUT_MJTED,
&muted) != ERROR ok) {
/* Handl e error */

}

i f (hardwar eSt at us == HARDWAREI NPUT_DI SABLED) {
/* No capture device avail able */

}
i f(deactivated == | NPUT_DEACTI VATED) {
/* I nput was deactivated for Push-To-Talk (not propagated to server) */

}
i f(muted == MJTEI NPUT_MJTED) ({
/* I nput was nuted (propagated to server) */

}

When using Push-To-Talk, you should deactivate Voice Activity Detection in the preprocessor or keep the VAD level very
low. To deactivate VAD, use:

ts3client _set PreProcessor Confi gVal ue(server Connecti onHandl erI D, "vad", "false");

How to adjust the volume?

Output volume

109

TeamSpeak 3 Client
SDK Developer Manual

The globa voice output volume can be adjusted by changing the “volume_modifier” playback option using the function
ts3client _set Pl aybackConfi gVal ue. Thevaueisin decibel, so 0 is no modification, negative values make the
signal quieter and positive values louder.

Example to increase the output volume by 10 decibel:

ts3client _set Pl aybackConfi gVal ue(scHandl er1 D, "vol ume_nodifier", 10);

In addition to modifying the globa output volue, the volume of individua clients can be changed with
ts3client_setdient Vol uneMdifier.

Input volume

Automatic Gain Control (AGC) takes care of the input volume during preprocessing automatically. Instead of modifying the
input volume directly, you modify the AGC preprocessor settings with set Pr oPr ocessor Conf i gVval ue.

How to talk across channels?

Generally clients can only talk to other clientsin the same channel. However, for specific scenariosthis can be overruled using
whisper lists.. Thisfeature allows specific clientsto temporarily talk to other clients or channels outside of their own channel.
While whispering, talking to the own channel is disabled.

An example for a scenario where whisper may be useful would be a team consisting of a number of squads. Each squad is
assigned to one channel, so squad members can only talk to other members of the same squad. In addition, there is ateam
leader and squad leaders, who want to communicate accross the squad channels. This can be implemented with whispering,
so the team leader could broadcast to all squad leaders, or a squad leader could briefly report to the team leader temporarily
sending his voice datato him instead of the squad leaders channel.

This mechanism is powerful and flexible allowing the SDK devel oper to handle more complex scenarios overruling the stan-
dard behaviour where clients can only talk to other clients within the same channel.

110

TeamSpeak 3 Client
SDK Developer Manual

Index

Symbols
3D sound, 44

A

AGC, 32
Automatic Gain Control, 32

B
bandwidth, 30

C

callback, 6

calling convention, 3

capture device, 19

Channel order, 67

Channel voice data encryption, 66
client 1D, 13

codec, 30

E

encoder, 31

enums
Channel Properties, 61
ClientProperties, 51, 56
CodecEncryptionMode, 70
ConnectStatus, 12, 14, 68
InputDeactivationStatus, 108
LogLevdl, 17, 17
LogType, 5, 17
TextMessageTargetM ode, 80
Virtual ServerProperties, 69
Visihility, 72, 83, 85

error codes, 4

events
onChannel DescriptionUpdateEvent, 90
onChannelMoveEvent, 78
onChannel PasswordChangedEvent, 91
onChannel SubscribeEvent, 84
onChannel SubscribeFinishedEvent, 84
onChannelUnsubscribeEvent, 85
onChannel UnsubscribeFinishedEvent, 85
onClientKickFromChannel Event, 82
onClientKickFromServerEvent, 82
onClientMoveEvent, 72
onClientMoveMovedEvent, 73
onClientM oveSubscriptionEvent, 85
onClientMoveTimeoutEvent, 90
onClientPasswordEncrypt, 88

111

TeamSpeak 3 Client
SDK Developer Manual

onConnectStatusChangeEvent, 12, 14
onCustom3dRaolloffCal culationClientEvent, 46
onCustom3dRaolloffCal cul ationWaveEvent, 46
onCustomPacketDecryptEvent, 88
onCustomPacketEncryptEvent, 87
onDelChannelEvent, 76

onEditCapturedV oiceDataEvent, 41
onEditMixedPlaybackV oiceDataEvent, 40
onEditPlaybackV oiceDataEvent, 38
onEditPostProcessV oiceDataEvent, 39
onlgnoredWhisperEvent, 59
onNewChannel CreatedEvent, 74
onNewChannel Event, 13

onPlayback ShutdownCompleteEvent, 25
onServerEditedEvent, 71
onServerErrorEvent, 4, 16
onServerStopEvent, 14
onServerUpdatedEvent, 70
onTakStatusChangeEvent, 89
onTextMessageEvent, 80
onUpdateChannel EditedEvent, 66
onUpdateChannel Event, 91
onUpdateClientEvent, 58

onUserL oggingM essageEvent, 18

F

FAQ, 108

Filetransfer, 93

functions
onFilelnfoEvent, 108
onFileListEvent, 106
onFileListFinishedEvent, 107
onFileTransferStatusEvent, 105
ts3client_acquireCustomPlaybackData, 28
ts3client_activateCaptureDevice, 29
ts3client_allowWhispersFrom, 60
ts3client_channel set3DAttributes, 45
ts3client_closeCaptureDevice, 25
ts3client_closePlaybackDevice, 25
ts3client_closeWaveFileHandle, 43
ts3client_createldentity, 9
ts3client_destroyClientLib, 8
ts3client_destroyServerConnectionHandler, 9
ts3client_flushChannelCreation, 74
ts3client_flushChannelUpdates, 65
ts3client_flushClientSelfUpdates, 55
ts3client_freeMemory, 91
ts3client_getAverageTransferSpeed, 96
ts3client_getCaptureDevicelist, 23
ts3client_getCaptureModelList, 21
ts3client_getChannelClientList, 48
ts3client_getChannel EmptySecs, 92

112

TeamSpeak 3 Client
SDK Developer Manual

ts3client_getChannell| DFromChannel Names, 66
ts3client_getChannelList, 48
ts3client_getChannel OfClient, 49
ts3client_getChannelVariableAsInt, 60
ts3client_getChannelV ariableAsString, 61
ts3client_getChannelVariableAsUInt64, 61
ts3client_getClientID, 13, 51
ts3client_getClientLibVersion, 7
ts3client_getClientLibVersionNumber, 8
ts3client_getClientList, 48
ts3client_getClientSelfVariableAsInt, 51
ts3client_getClientSelfVariableAsString, 51
ts3client_getClientVariableAsInt, 56
ts3client_getClientVariableAsString, 57
ts3client_getClientVariableAsUInt64, 56
ts3client_getConnectionStatus, 12
ts3client_getCurrentCaptureDeviceName, 24
ts3client_getCurrentCaptureM ode, 24
ts3client_getCurrentPlaybackDeviceName, 24
ts3client_getCurrentPlayBackMode, 24
ts3client_getCurrentTransferSpeed, 96
ts3client_getDefaultCaptureDevice, 22
ts3client_getDefaultCaptureMode, 20
ts3client_getDefaultPlaybackDevice, 22
ts3client_getDefaultPlayBackMode, 20
ts3client_getEncodeConfigValue, 31
ts3client_getErrorMessage, 15
ts3client_getlnstanceSpeedLimitDown, 104
ts3client_getInstanceSpeedLimitUp, 104
ts3client_getParentChannel Of Channel, 49
ts3client_getPlaybackConfigV alueAsFloat, 35
ts3client_getPlaybackDevicelList, 23
ts3client_getPlaybackModel ist, 21
ts3client_getPreProcessorConfigValue, 32
ts3client_getPreProcessorlnfoVaueFloat, 35
ts3client_getServerConnectionHandlerList, 47
ts3client_getServerConnectionHandlerSpeedLimitDown, 105
ts3client_getServerConnectionHandl erSpeedLimitUp, 104
ts3client_getServerVariableAsint, 68
ts3client_getServerVariableAsString, 68
ts3client_getServerVariableAsUInt64, 68
ts3client_getTransferFileName, 93
ts3client_getTransferFilePath, 94
ts3client_getTransferFileRemotePath, 94
ts3client_getTransferFileSize, 94
ts3client_getTransferFileSizeDone, 95
ts3client_getTransferRunTime, 96
ts3client_getTransferSpeedLimit, 105
ts3client_getTransferStatus, 95
ts3client_haltTransfer, 99
ts3client_initClientLib, 5
ts3client_initiateGraceful Playback Shutdown, 25

113

TeamSpeak 3 Client
SDK Developer Manual

ts3client_isTransferSender, 95
ts3client_logMessage, 17
ts3client_openCaptureDevice, 20
ts3client_openPlaybackDevice, 19
ts3client_pauseWaveFileHandle, 43
ts3client_playWaveFile, 42
ts3client_playWaveFileHandle, 42
ts3client_processCustomCaptureData, 27
ts3client_registerCustomDevice, 26
ts3client_removeFromAllowedwWhispersFrom, 60
ts3client_requestChannel Delete, 76
ts3client_requestChannel Description, 62
ts3client_requestChannelMove, 77
ts3client_requestChannel Subscribe, 83
ts3client_requestChannel SubscribeAll, 84
ts3client_requestChannel Unsubscribe, 84
ts3client_requestChannelUnsubscribeAll, 84
ts3client_requestClientKickFromChannel, 81
ts3client_requestClientKickFromServer, 81
ts3client_requestClientMove, 71
ts3client_requestClientSetWhisperList, 59
ts3client_requestClientVariables, 57
ts3client_requestCreateDirectory, 102
ts3client_requestDeleteFile, 101
ts3client_requestFile, 98
ts3client_requestFilelnfo, 100
ts3client_requestFileList, 100
ts3client_requestMuteClients, 86
ts3client_requestRenameFile, 102
ts3client_requestSendChannel TextM sg, 79
ts3client_requestSendPrivateTextMsg, 78
ts3client_requestSendServerTextMsg, 79
ts3client_requestServerVariables, 70
ts3client_requestUnmuteClients, 86
ts3client_sendFile, 97
ts3client_set3DWaveAttributes, 47
ts3client_setChannel VariableAsint, 64
ts3client_setChannelVariableAsString, 64
ts3client_setChannel VariableAsUInt64, 64
ts3client_setClientSelfVariableAsint, 54
ts3client_setClientSelfVariableAsString, 55
ts3client_setClientVolumeModifier, 37
ts3client_setl nstanceSpeedLimitDown, 103
ts3client_setl nstanceSpeedLimitUp, 103
ts3client_setl ocal TestMode, 92
ts3client_setL ogVerbosity, 18
ts3client_setPlaybackConfigValue, 36, 110
ts3client_setPreProcessorConfigValue, 34
ts3client_setServerConnectionHandlerSpeedLimitDown, 104
ts3client_setServerConnectionHandl er SpeedLimitUp, 104
ts3client_setTransferSpeedLimit, 105
ts3client_spawnNewServerConnectionHandler, 9

114

TeamSpeak 3 Client
SDK Developer Manual

ts3client_startConnection, 10
ts3client_startV oiceRecording, 42
ts3client_stopConnection, 14
ts3client_stopV oiceRecording, 42
ts3client_systemset3DListenerAttributes, 44
ts3client_systemset3D Settings, 45
ts3client_unregisterCustomDevice, 27

H
headers, 3

L

Linux, 3
Logging, 16

M
Macintosh, 3

N

narrowband, 30

P

Permanent channel, 64
playback device, 19
preprocessor, 32
PushToTak, 108

R

return code, 4

S
sampling rates, 30
Semi-permanent channel, 64
server connection handler, 8
structs

TS3 VECTOR, 44
system requirements, 3

U
ultra-wideband, 30

\Y

VAD, 32

Voice Activity Detection, 32
volume factor_ wave, 36
volume_modifier, 36, 110

W

welcome message, 12
wideband, 30

115

TeamSpeak 3 Client
SDK Developer Manual

Windows, 3

116

	TeamSpeak 3 Client SDK Developer Manual
	Table of Contents
	Introduction
	System requirements
	Overview of header files
	Calling Client Lib functions
	Return code

	Initializing
	The callback mechanism

	Querying the library version
	Shutting down
	Managing server connection handlers
	Connecting to a server
	Disconnecting from a server
	Error handling
	Logging
	User-defined logging

	Using playback and capture modes and devices
	Initializing modes and devices
	Querying available modes and devices
	Checking current modes and devices
	Closing devices
	Using custom devices
	Activating the capture device

	Sound codecs
	Encoder options
	Preprocessor options
	Playback options
	Accessing the voice buffer
	Voice recording

	Playing wave files
	3D Sound
	Query available servers, channels and clients
	Retrieve and store information
	Client information
	Information related to own client
	Information related to other clients
	Whisper lists

	Channel information
	Channel voice data encryption
	Channel sorting

	Server information

	Interacting with the server
	Joining a channel
	Creating a new channel
	Deleting a channel
	Moving a channel
	Text chat
	Sending
	Receiving

	Kicking clients
	Channel subscriptions

	Muting clients locally
	Custom encryption
	Custom passwords
	Other events
	Miscellaneous functions
	Filetransfer
	Query information
	Initiate transfers
	Speed limits
	Callbacks

	FAQ
	How to implement Push-To-Talk?
	How to adjust the volume?
	How to talk across channels?

	Index

