
Getting Started with TeamSpeak 3 SDK and Unreal Engine

Overview
This package will allow you to integrate the TeamSpeak VoIP solution into an Unreal
Engine 4 project. The TeamSpeak API is a pure C API to allow integration into many
different languages. This package includes a wrapper to connect the TeamSpeak C API
with Unreal Engine blueprints. In addition, it is possible to build your integration with C++
by using the TeamSpeak API directly.

Currently the project supports Unreal Engine 4 on Windows.

How the wrapper works
The wrapper offers two methods of using the TeamSpeak SDK.

1. Blueprints
Most TeamSpeak functions (see note below) are completely blueprintable. The
TeamSpeak API is directly mapped to blueprints. With blueprints you can
easily implement TeamSpeak functionality without programming in C++.

Note: The TeamSpeak SDK uses 64 bit integers for handlers and channelid.
Unfortunately, the integers in Blueprint are signed 32-bit integers. If you
require larger numbers than that, please use 64-bit integers in the
C++ interface.

2. Access the TeamSpeak C++ wrapper functions
The idea behind the C++ wrapper is to simplify development by using the
Unreal Engine data types directly, avoiding writing an own wrapper
between the TeamSpeak API and Unreal Engine types.
The wrapper will also automate take care of allocating and deallocating
the memory of the native TeamSpeak API structures.

Alternatively, the TeamSpeak API can be accessed directly. However, this will require you
to convert the C structures into Unreal data types. Instead, we recommend using the C++
wrapper functions.

How to use the TeamSpeak SDK
The TeamSpeak SDK is delivered as a module.

1. Extract the “Source” and “ThirdParty” folder into your existing project.
2. Add the module into your project:

 YourProject.Target.cs and YourProjectEditor.Target.cs:
Add to TargetRules: OutExtraModuleNames.Add(“TeamSpeak_SDK”);

 Add the module name “TeamSpeak_SDK” to
PublicDependencyModuleNames in YourProject.build.cs of your primary
module.

3. Make sure you added the required ts3client_win64.dll / ts3client_win32.dll in
your dependencies or put it into your Binaries subfolders. Required to launch
your game or editor.

For a sample setup, see the included project files in Template\TeamSpeak SDK
sample\Source

To access the blueprint functionality, add a class member variable with
TeamSpeak_Manager type in your GameMode and initialize it. It's not possible to create
the variable in a blueprinted GameMode class, C++ source code is required. For C++
usage you can choose the class you want. Do not forget to include
“TeamSpeak_Manager.h”.

For a quick introduction, see the sample in the Template folder. This sample demonstrates
how to build a simple TeamSpeak client with blueprints. To access the sample, either open
the Template’s .uproject file directly or copy the “TeamSpeak SDK sample” folder into your
Unreal Engine Templates directory, which adds a new project type “TeamSpeak SDK” to
the engines New Project dialog.

The TeamSpeak SDK wrapper for Unreal Engine only includes the TeamSpeak client. This
client is able to connect to a TeamSpeak SDK server (connecting to regular non-SDK
servers is not supported).

For a quick-start, the template includes a ready-to-run SDK server executable. To
customize the SDK server, download the full TeamSpeak SDK from
www.teamspeak.com/?page=downloads.

When deploying or testing Unreal engine applications with TeamSpeak, make sure to
include the following DLLs:

1. ts3client_win32.dll or ts3client_win64.dll (directly linked)
2. soundbackends (loaded dynamically at runtime)

 directsound_win32.dll or directsound_win64.dll
 windowsaudiosession_win32.dll or windowsaudiosession_win64.dll

When creating a new TeamSpeak SDK project, the files are automatically included in your
project.

Additional Information:

For information how to use the TeamSpeak SDK or to see more samples, see the
TeamSpeak SDK Documentation (client) and SDK sample.

It's not possible to get connection information (client and server) through the blueprint
interface. Those information are uint64 values only. If you need those values, access it
through the C++ interface.

