TeamSpeak 3 Server
SDK Developer Manual

Revision 2017-09-08 09:51:42
Copyright © 2007-2017 TeamSpeak Systems GmbH

Table of Contents

gL T [ Tox ' o PR 3
Y S (S LU0 0T 1= £ PN 3
[ 1= o PPN 3

(0 | oo IS = oY= g 1T oI 0 o 4
TR (=4 o 4
The callback MEChBNISM ... i et e e e e e e e e e et e e e e et e e e e et eas 5
108 0= oY T aTo i Tl [T ol ir= VY= = o o T 6
RS 1011 o o [0 o 7
o gl 7= o {11 0 8
Query virtual servers, clients and ChaNNEIS ... 9
Create and SIOP VIFTUBI SEIVETS ......iiii i et e e e e e e e e e e e e e e e e e et e e et e e et s e e et e e et e e et e et e eta e eatneeennnns 12
Alternative way t0 Create VIrtUal SEIVEY'S ........iiiei i e e e e e e e e e e e e e e et e et e e aaneeeens 14
Retrieve and StOre INFOIMELION ...........iiiiiiii et e e e e et e e et e e e et e e e e et e e e e et e e e e et e e e e st e eeeatn s 20
(@1 o 1o {41 7= 1 o) o [ PSPPI 20

(@ 00C Ao TT= o AT ) {017 o o PPN 20

Setting Client INFOMMELION ... .oouiii e e e e e e e et e e e e e e e e et e e et e raneees 23

R AT LA o 1= S 1T £ Y 25

Channel INFOMMIBLION ... e et e e et e e et et e e et et n e e e eetenaeeeetenaeeestnaeaenes 26
Query channel INfOIMEBEION .........uiiii e e e e e e e e e e e et e e e et e et e e et e e e e ennaes 26

Setting channel INFOIMALION ........oiii i e e e e e e e e e et e raaaaee 29

S VL= T o) o001 o PSSP 30
QUETY SEIVEr INFOMMIBEION ...uuiiiii i e e e e e e e e e e e e e e e e et e e et e e et e e et e e aa e ean e eatneeeanaeenas 30

S C 1] 0o IS = VL= T 010 107 1 o o 33

(7= 10To V7T 11 g T o) o0 0= (1o PP 34
Channel and client ManiPUIGLION ..........oiiuiiii e e e e e e e e e e e e e et e e et e e et e e e aa e e st e e et e e et e eaneeanns 35
Creating @ NEW CRANNEL ......oou et e e e e e e e e et e e et e e et e e et e et e e e e e aaas 36
Alternative way to create anew ChannEl ..o 37

D= L=t 1] T = e 17 1= P 39

1Y KoY T T = 4 7= =N 39

1Y KoY g ot 1= o £ 40
Y 1 S PP PTPTR 41
(@0 (g 1 1= 0ot Y/ o) o) o T 47
(Ol S (g T 7= 550 (o[ 48
(@0 (ol T o 1= 4115 o) 50
SECUNLY SAItS AN NASNES ...t e e e e e e e et e e et e et e et e e e e e e r e aann 53
MISCEIIANEOUS FUNCLIONS ....eevtiee ettt e e ettt e e e ettt e e e e e et s e e e eetan e e e eete s aeeeete e eeeate s aeeentnaaaees 55
== T 010 1 01= 1010 Y/ 55
SEting the [0g TEVEL ... e e e e e e e e e e a e aaan 55
Disabling ProtoCol COMMEANGAS .........iiiiieiit et e e e e e e e e e e e e et e e et e e et e e st e e et e eeta e eeanaeeanaeannaasnnaaes 56

T (=0 = PSP 57




TeamSpeak 3 Server
SDK Developer Manual

(08 1107 o PO PPTTP PR TPUPPPPPPTNt 58
PITNISSIONS ...ttt ettt et e e e et e et et e e e e e e e e eee 61
N O PP ST PPPTTTTRT 66
| cannot start multiple server processes? | cannot start more than one virtual Server?..........cooveveieviiiiiiinecnneenn, 66
How can | configure the maximum number Of SIOES? ... ... e 66
| get "Accounting | | sid=1 is running" "initializing shutdown" iNthe 10g ............oooiiiiiii e, 67
How to implement a name/password authentiCation? ...............oiiuiiiiii e 67
130 (< PP PT TP PPPPTR 69




TeamSpeak 3 Server
SDK Developer Manual

Introduction

TeamSpeak 3 is a scalable Voice-Over-IP application consisting of client and server software. TeamSpeak is generally re-
garded as the leading Vol P system offering a superior voice quality, scalability and usability.

The cross-platform Software Development Kit alows the easy integration of the TeamSpeak client and server technology
into own applications.

This document describes server-side programming with the TeamSpeak 3 SDK. The SDK user will be able to create a custom
TeamSpeak 3 server binary using the provided server APl and library.

System requirements

For developing third-party clients with the TeamSpeak 3 Server Lib the following system requirements apply:
* Windows
Windows XP, Vista, 7, 8, 8.1 (32- and 64-hit)
* Mac OS X
Mac OS X 10.6 and above
* Linux

Any recent Linux distribution with libstdc++ 6 (32- and 64-hbit)

2 | mportant
The calling convention used in the functions exported by the shared TeamSpeak 3 SDK libariesis cdecl. You
must not use another calling convention, like stdcall on Windows, when declaring function pointersto the Team-
Speak 3 SDK libraries. Otherwise stack corruption at runtime may occur.

Usage

All therequired files are located in the bi n directory of the TeamSpeak 3 SDK distribution.

2 | mportant

Thelicensefilel i censekey. dat needsto belocated in the same folder as your server executable.

If no license key is present, the server will run with the following limitations:
» Only one server process per machine

e Only onevirtual server per process

e Only 32 dlots

For more detailed information about licensing of TeamSpeak 3 servers or to obtain a license, please contact
<sal es@ eanspeakusa. conp.




TeamSpeak 3 Server
SDK Developer Manual

Calling Server lib functions
Server Lib functions follow acommon pattern. They always return an error code or ERROR_ok on success. If thereisaresult

variable, it is adwaysthe last variable in the functions parameters list.

ERROR t s3server _FUNCNAME(argl, arg2, ..., &esult);

Result variables should only be accessed if the function returned ERROR _ok. Otherwise the state of the result variable is
undefined.

In those cases where the result variable is a basic type (int, float etc.), the memory for the result variable has to be declared
by the caller. Simply pass the address of the variable to the Server Lib function.

int result;

if(ts3server _XXX(argl, arg2, ..., &esult) == ERROR ok) {
/* Use result variable */

} else {

/* Handl e error, result variable is undefined */

}

If the result variable is a pointer type (C strings, arrays etc.), the memory is allocated by the Server Lib function. In that case,
the caller has to release the allocated memory later by usingt s3ser ver _freeMenory. It isimportant to only access and
release the memory if the function returned ERROR_ok. Should the function return an error, theresult variableisuninitialized,
so freeing or accessing it could crash the application.

char* result;

if(ts3server _XXX(argl, arg2, ..., &esult) == ERROR ok) {

/* Use result variable */

ts3server _freeMenory(result); /* Release result variable */
} else {

/* Handle error, result variable is undefined. Do not access or release it. */
}

§ Note

Server Lib functions are thread-safe. It is possibleto accessthe Server Lib from several threads at the sametime.
Initializing
When starting the server application, initialize the Server Lib with

unsi gned i nt ts3server _initServerLib(functionPointers, usedLogTypes, | ogFil eFol der);

const struct ServerlLi bFunctions* functionPointers;
i nt usedLogTypes;
const char* | ogFil eFol der;

§ Note
This function must not be called more than once.




TeamSpeak 3 Server
SDK Developer Manual

e functionPoi nters
Callback function pointers. See below.
» usedLogTypes

Defines the log output types. The Server Lib can output log messages to afile (located in the | ogs directory relative to
the server executable), to stdout or to user defined callbacks. If user callbacks are activated, the onUser Loggi ngMes-
sageEvent event needs to be implemented.

Available values are defined by the enum LogTypes (seepubl i ¢c_defi ni ti ons. h):

enum LogTypes {

LogType_NONE = 0x0000,
LogType_FI LE = 0x0001,
LogType_CONSCLE = 0x0002,
LogType_USERLOGE NG = 0x0004,
LogType_NO_NETLOGGE NG = 0x0008,
LogType_DATABASE = 0x0010,

b
Multiple log types can be combined with abinary OR. If only LogType_NONE is used, local logging is disabled.

E Note
Logging to console can slow down the application on Windows. Hence we do not recommend to log to the
console on Windows other than in debug builds.

§ Note
LogType_ NO NETLOGAE NGis no longer used. Previoudly this controlled if the Server Lib would send
warning, error and critical log entriesto awebserver for analysis. As netlogging does not occur anymore, this
flag has no effect anymore.

LogType DATABASE isunused in SDK builds.
* | ogFi | eFol der

If file logging is used, this defines the location where the logs are written to. Pass NULL for the default behaviour, which
istouse afolder called | ogs in the current working directory.

Returns ERROR _ok on success, otherwise an error code asdefined inpubl i ¢_errors. h.

§ Note
During initialization the serverlib will attempt to connect to the TeamSpeak licensing server. This function may
block if the licensing server is unreachable.

The callback mechanism

The communication from the Server Lib to the server application takes place using callbacks. The server application has to
define a series of function pointers using the struct ServerLibFunctions (seeser ver | i b. h). These callbacks are used to let
the server application hook into the library and receive notifaction on certain actions.

A callback examplein C:




TeamSpeak 3 Server
SDK Developer Manual

static void my_onCient Connected_cal | back(ui nt64 serverl D, anylD clientlD, uint64 channellD,
unsigned int* renoveCientError) {
printf("dient % connected on virtual server % joining channel %", clientlD, serverlD, channellD);

}

C++ developers can also use static member functions for the callbacks.

Beforecallingt s3ser ver _i ni t Ser ver Li b, create an instance of struct ServerLibFunctions, initialize all function point-
erswith NULL and point the structs function pointers to your implemented callback functions:

unsigned int error;

/* Create struct */
Server Li bFuncti ons sl Funcs;

/* Initialize all function pointers with NULL */
menset (&sl Funcs, 0, sizeof(struct ServerlLi bFunctions));

/* Assign those function pointers you inplenmented */

sl Funcs. onVoi ceDat aEvent my_onVoi ceDat aEvent _cal | back;

sl Funcs. onCl i ent St art Tal ki ngEvent my_onC i ent St art Tal ki ngEvent _cal | back;
sl Funcs. onCl i ent St opTal ki ngEvent my_ond i ent St opTal ki ngEvent _cal | back;
sl Funcs. onCl i ent Connect ed my_ond i ent Connect ed_cal | back;

sl Funcs. onCl i ent Di sconnect ed my_ond i ent Di sconnect ed_cal | back;

sl Funcs. onC i ent Moved my_ond i ent Moved_cal | back;

sl Funcs. onChannel Cr eat ed my_onChannel Cr eat ed_cal | back;

sl Funcs. onChannel Edi t ed my_onChannel Edi t ed_cal | back;

sl Funcs. onChannel Del et ed my_onChannel Del et ed_cal | back;

sl Funcs. onSer ver Text MessageEvent my_onSer ver Text MessageEvent _cal | back;
sl Funcs. onChannel Text MessageEvent my_onChannel Text MessageEvent _cal | back;
sl Funcs. onUser Loggi ngMessageEvent my_onUser Loggi ngMessageEvent _cal | back;
sl Funcs. onAccount i ngError Event my_onAccount i ngError Event _cal | back;

sl Funcs. onCust onPacket Encr ypt Event NULL; // Not used by your application
sl Funcs. onCust onPacket Decr ypt Event NULL; // Not used by your application

/* Initialize library with callback function pointers */
error = ts3server_initServerlLib(&sl Funcs, LogType_FILE | LogType_CONSOLE);
if(error = ERROR ok) {

printf("Error initializing serverlib: %\n", error);

()

2 | mportant

Aslong asyouinitialize unimplemented callbackswith NULL, the Server Lib won't attempt to call those function
pointers. However, if you leave unimplemented callbacks undefined, the Server Lib will crash when trying to
call them.

Theindividual callbacks are described in the chapter Events.

Querying the library version

The Server Lib version can be queried with
unsi gned int ts3server_get ServerlLi bVersion(result);

char** result;




TeamSpeak 3 Server
SDK Developer Manual

e result

Address of avariable that receives the serverlib version string, encoded in UTF-8.

A Caution

The result string must be released usingt s3ser ver _freeMenory. If an error has occured, the result string
is uninitialized and must not be released.

To get only the version number, which is a part of the complete version string, as numeric value:
unsi gned int ts3server_get ServerLi bVersi onNunber (result);

ui nt 64* result;

e result
Address of avariable that receives the numeric serverlib version.

Both functions return ERROR_ok on success, otherwise an error code as defined inpubl i c_errors. h.

Example code to query the Server Lib version:

unsigned int error;

char* version;

error = ts3server_get ServerLi bVersion(&version);

if(error !'= ERROR ok) {
printf("Error querying serverlib version: %\ n", error);
return;

}
printf("Server library version: %\n", version); /* Print version */
ts3server _freeMenory(version); /* Release string */

Shutting down

Before exiting the application, the Server Lib should be shut down with

unsi gned int ts3server_destroyServerLib();

Returns ERROR _ok on success, otherwise an error code asdefined inpubl i ¢_errors. h.

Any call to Server Lib functions after shutting down has undefined results.

& Caution

Never destroy the Server Lib from within a callback function. This might result in a segmentation fault.




TeamSpeak 3 Server
SDK Developer Manual

Error handling

Each Server Lib function returns either ERROR_ok on success or an error value as defined in publ i c_errors. hif the
function fails.

The returned error codes are organized in groups, where the first byte defines the error group and the second the count within
the group: The naming convention is ERROR_<group>_<error>, for example ERROR _cl i ent _i nval i d_i d.

Example:

unsigned int error;
char* wel coneMsg;

/* wel comeMsg nenory is allocated if error is ERROR ok */
error = ts3server_getVirtual ServerVari abl eAsString(server| D, VI RTUALSERVER WELCOVEMESSAGE, &wel comeMsg);
if(error !'= ERROR ok) {

/* Handl e error */

return;

}
/* Use wel coneMsg. .. */
ts3server_freeMenory(wel coneMsg); /* Release nenory *only* if function did not return an error */

E Note
Result variables should only be accessed if the function returned ERROR _ok. Otherwise the state of the result
variable is undefined.

2 | mportant
Some Server Lib functions dynamically alocate memory which has to be freed by the caler using
t s3server _freeMenory. It isimportant to only access and release the memory if the function returned
ERROR_ok. Should the function return an error, the result variable is uninitialized, so freeing or accessing it
will likely result in a segmentation fault.

See the section Calling Server Lib functions for additional notes and examples.

A printable error string for a specific error code can be queried with
unsi gned int ts3server_getd obal Error Message(error Code, error);

unsi gned int errorCode;
char** error;

* error Code
The error code returned from all Server Lib functions.
e error

Address of avariablethat receivesthe error message string, encoded in UTF-8 format. Unlessthereturn val ue of thefunction
is not ERROR_ok, the string should be released witht s3ser ver _freeMenory.




TeamSpeak 3 Server
SDK Developer Manual

Example:

unsigned int error;
char* version;

error = ts3server_get ServerlLi bVersion(&ersion); /* Calling some Server Lib function */
if(error !'= ERROR ok) {
char* errorMsg;
i f(ts3server_get d obal Error Message(error, &errorMsg) == ERROR ok) { /* Query printable error */

printf("Error querying client ID %\n", errorMsg);
ts3server_freeMenory(errorMsg); /* Release nenory only if function succeeded */

}
}
Query virtual servers, clients and channels

A list of all virtual servers can be queried with:
unsi gned int ts3server_getVirtual ServerList(result);

ui nt 64** resul t;

e result

Address of avariable which receives a NULL-terminated array of server IDs. Unless an error occured, the array should be
released witht s3server _freeMenory.

Returns ERROR _ok on success, otherwise an error code as defined in publ i ¢c_errors. h. If an error has occured, the
result array is uninitialized and must not be released.

E | Note
The default virtual server hasan ID of 1.

A list of al clients currently online on the specified virtual server can be queried with:
unsigned int ts3server_getCientList(serverlD, result);

ui nt 64 serverl D;
anyl D** result;

e serverlD
ID of the virtual server on which the client list is requested.
* result

Address of avariable which receives aNULL-terminated array of client IDs. Unless an error occured, the array should be
released witht s3server _freeMenory.




TeamSpeak 3 Server
SDK Developer Manual

Returns ERROR _ok on success, otherwise an error code as defined in publ i c_errors. h. If an error has occured, the
result array is uninitialized and must not be released.

A list of all channels currently available on the specified virtual server can be queried with:
unsi gned int ts3server_get Channel Li st (serverl D, result);

ui nt 64 serverl D,
ui nt 64** result;

» serverl D
ID of the virtual server on which the channel list is requested.
* result

Address of a variable which receives a NULL-terminated array of channel IDs. Unless an error occured, the array should
bereleased witht s3server _freeMenory.

Returns ERROR _ok on success, otherwise an error code as defined in publ i ¢c_errors. h. If an error has occured, the
result array is uninitialized and must not be released.

To get alist of all clients currently member of the specified channel:
unsi gned int ts3server_get Channel dientlList(serverlD, channellD, result);

ui nt 64 serverl D,
ui nt 64 channel | D;
anyl D** result;

* serverlD

ID of the virtual server on which thelist of clientsis requested.
* channel I D

ID of the specified channel.
* result

Address of avariable which receives aNULL-terminated array of client IDs. Unless an error occured, the array should be
released witht s3server _freeMenory.

Returns ERROR _ok on success, otherwise an error code as defined in publ i c_errors. h. If an error has occured, the
result array is uninitialized and must not be released.

10



TeamSpeak 3 Server
SDK Developer Manual

Query the channel the specified client has currently joined:
unsi gned int ts3server_get Channel 0 dient(serverlD, clientID, result);

ui nt 64 serverl D,
anylD clientlD;
ui nt 64* result;

» serverlD
ID of the virtual server on which the channel is requested.
* channel I D
ID of the specified client.
* result
Address of avariable which receives the ID of the channel the specified client has currently joined.

Returns ERROR _ok on success, otherwise an error code asdefined in publ i c_errors. h.

Get the parent channel of agiven channel:
unsi gned int ts3server_get Par ent Channel O Channel (serverI D, channel I D, result);

ui nt 64 serverl D,
ui nt 64 channel | D;
ui nt 64* result;

* serverlD

ID of the virtual server on which the parent channel is requested.
« channel I D

ID of the channel whose parent channel is requested.
* result

Address of avariable which receives the ID of the parent channel.

Returns ERROR _ok on success, otherwise an error code asdefined inpubl i ¢_errors. h.

Exampleto print alist of all channels on avirtual server:

ui nt 64* channel s;

i f (ts3server_get Channel Li st (serverl D, &channel s) == ERROR ok) {
for(int i=0; channels[i] != NULL; i++) {

11



TeamSpeak 3 Server
SDK Developer Manual

}

printf("Channel ID: %\n", channels[i]);
}

t s3server _freeMenory(channel s);

Exampleto print al clients who are member of channel with ID 123:

uint64 channel ID = 123; /* ID in our exanple */
anyl D* clients;

i f(ts3server_get Channel dientList(serverlD, channellD, &clients) == ERROR ok) {

}

for(int i=0; clients[i] != NULL; i++) {
printf("Cient ID %\n", clients[i]);
}

ts3server _freeMenory(clients);

Create and stop virtual servers

A new virtual server can be created within the current server process by calling:

unsi gned int t s3server _createVirtual Server(serverPort, serverlp, server Nare,
serverKeyPair, serverMaxCients, result);

unsi gned int serverPort;

const char* serverlp;

const char* server Nane;

const char* serverKeyPair;
unsi gned int serverMaxd i ents;
ui nt 64* result;

server Port
UDP port to be used for the new virtual server. The default TeamSpeak 3 port is UDP 9987.
serverlp

Comma seperated list of 1P addresses to bind the virtual server to. Both IPv4 and |Pv6 | Ps are supported. Pass “0.0.0.0, ::"
to bind the virtual server to al |P addresses.

server Nanme
Name of the new virtual server. This can be later accessed through the virtual server property VI RTUALSERVER_NAME.
server KeyPai r

Unique keypair of this server. The first time you start this virtual server, pass an empty string, query the keypair with
ts3server _get Vi rtual Server KeyPai r, then save the keypair locally and pass it the next time as parameter to
this function.

server MaxCients
Maximum number of clients (“slots’) which can simultaneously be connected to this virtual server.

resul t

12



TeamSpeak 3 Server
SDK Developer Manual

Address of avariable which receivesthe ID of the created virtual server.

Returns ERROR _ok on success, otherwise an error code as defined in publ i ¢_errors. h. On success, the created virtual
server will be automatically started.

A

K

Caution

Y ou should not create avirtual server with an empty keypair except than the first time. If the server should crash,
license problems might result when using “throw-away” keypairs, asthe license systems might consider you are
running more virtual serversthan you actualy do.

Instead query the keypair the first time the virtual server was started, save it to afile and reuse it when creating
anew virtual server. Thisway licensing issueswill not occur.

See the server sample which is included in the TeamSpeak 3 SDK for an example on how to save and restore
keypairs.

Caution

When avirtual server isstarted, it will register itself at a TeamSpeak licensing server reporting the maximal client
count to ensure the server is operating within the license limits. On shutdown, the virtual server will unregister
at the licensing server.

This|leads to two important things to keep in mind:

1) Dont just kill your server with Ctrl-C, instead ensure it's shutdown properly calling
t s3server _stopVirtual Server. If killed too often, thelicensing server might reject this server instance
because the license seems to be exceeded as client slots are only added but never removed.

2) Don't start a virtua server too frequently. This may raise an error “ virtualserver started too many timesin
a certain time period” . Contacting the licensing server will be prevented to protect our backend services from
getting spammed with frequent server updates for the same server.

The trigger conditions for this error are very specific and are as follows:
* You start a server instance and then stop the same instance within 5 seconds of it being started.
 The above happens more than 3 times in a 41 minute window.

After you triggered this error, you will be prevented from starting any server instance using the affected license
for aperiod of 12 minutes.

Y ou should first investigate how you managed to trigger this error and change your scriptsto avoid triggering the

conditions above. Then you must not start any server instance for the 12 minute grace period mentioned above.
After thiswait, you should be able to start your instance normally.

Note

The TeamSpeak 3 server uses UDP. Support for TCP might be added in the future.

To query the keypair of avirtual server, use:

13



TeamSpeak 3 Server
SDK Developer Manual

unsi gned int ts3server_getVirtual ServerKeyPair(serverl D, result);

ui nt 64 serverl D,
char** result;

* serverlD
ID of the virtual server for which the keypair is queried.
* result

Address of avariable that receives a string with the keypair of thisvirtual server. Save the keypair and passit the next time
thisvirtual server is created as parameter tot s3ser ver _creat eVi rt ual Server.

Returns ERROR _ok on success, otherwise an error code as defined in publ i c_errors. h. If an error has occured, the
result string is uninitialized and must not be rel eased.

A virtual server can be stopped with:
unsi gned int ts3server_stopVirtual Server(serverlD);

ui nt 64 serverl D,

* serverlD
ID of the virtual server that should be stopped.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

Alternative way to create virtual servers

In addition to the previously mentioned way to start avirtual server usingt s3server _start Vi rt ual Server, thereis
an alternative way to create a virtual server. The advantage of this method is the possibility to restore the complete channel
structure on server creation including the channel IDsin one step. This allows taking and restoring server snapshotsincluding
the channel tree.

§ Note
For a complete exampl e please see the “server_creation_params’ sample code in the SDK package.

First, astruct TS3Vi rt ual Ser ver Cr eat i onPar ans has to be created, which will be filled with essential and optional
server parameters and then used to create and start the virtual server. Create a new virtual server parameter structure with
the function:

unsi gned int ts3server_nakeVirtual ServerCreati onParans(result);

14



TeamSpeak 3 Server
SDK Developer Manual

struct TS3Virtual Server Creati onParans** result;

e result
Address of avariable that receives the created struct TS3Vi r t ual Ser ver Cr eat i onPar ans.

Returns ERROR _ok on success, otherwise an error code as defined in publ i ¢c_errors. h. If an error has occured, the
result struct is uninitialized and must not be released.

Oncethe struct TS3Vi r t ual Ser ver Cr eat i onPar ans has been created, it needs to be filled with the essential param-
etersto create anew virtual server. Essential parametersinclude server port, IP, the key pair, max clients, number of channels
we want to start the server with and the virtual server ID.

Set the essential parameters with the function:

unsigned int ts3server_setVirtual ServerCreationParans(virtual Server Creati onPar ans,
serverPort, serverlp, serverKeyPair, serverMaxCients, channel Count, serverlD);

struct TS3Virtual Server Creati onParans* virtual Server Creati onPar ans;
unsi gned int serverPort;

const char* serverlp;

const char* serverKeyPair;

unsi gned int serverMaxd i ents;

unsi gned i nt channel Count;

ui nt 64 serverlD;

e virtual Server Creati onPar ans

Address of the struct TS3Virtual Server Creati onParans, which was created earlier with
t s3server _makeVi rtual Server Creati onPar ans.

server Port
Port of the virtual server to be created.
serverlp

Comma seperated list of 1P addresses to bind the virtual server to. Both IPv4 and |Pv6 | Ps are supported. Pass “0.0.0.0, ::"
to bind the virtual server to al IP addresses.

server KeyPai r

Unique keypair of this server. The first time you start this virtual server, pass an empty string, query the keypair with
ts3server _get Vi rtual Server KeyPai r, then save the keypair locally and pass it the next time as parameter to
this function.

server MaxCl i ents

Maximum numbers clients which can be online on the virtual server at the same time.

15



TeamSpeak 3 Server
SDK Developer Manual

channel Count

Number of channels which are immediately created a server start.  This value de
fines how many  structs TS3Channel Creati onPar ans are available in the function
ts3server _get Virtual Server Cr eati onPar anmsChannel Cr eat i onPar ans, wherethe channelswill bede-
fined later.

serverl| D
ID of the virtual server to be created.

Returns ERROR _ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

After essential virtual server parameters have been defined witht s3ser ver _set Vi rt ual Server Cr eat i onPar ans,
additional parameters can be filled. For that, first a struct TS3Vari ables needs to be queried
from the TS3Virtual ServerCreationParans, in which the additiona paramters will be writ-
ten using the functions ts3server_setVariabl eAslnt, ts3server_setVariabl eAsU nt64 and
t s3server _set Vari abl eAsStri ng.

Query the TS3Var i abl es with:

unsi gned i nt
t s3server _get Virtual Server Creati onParansVari abl es(vi rtual Server Creati onParans, re-
sult);

struct TS3Virtual Server Creati onParans* virtual Server Creati onPar ans;
struct TS3Vari abl es** result;

e virtual Server Creati onPar ans

Address of the struct TS3Virtual ServerCreati onParans, which was created earlier with
ts3server _makeVirtual Server Creati onPar ans.

resul t
Adress of avariable into which the struct TS3Var i abl es iswritten.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

Once you have a pointer to a valid struct TS3Var i abl es, you can query and modify various parameters with one of the
following functions. Select the proper function depending of the type of the parameter you want to query or modify. The
parameter f | ag isavalue VI RTUALSERVER * defined intheenum Vi r t ual Ser ver Properti es.

Query parameter of the struct TS3Var i abl es asinteger:
unsi gned int ts3server_getVariabl eAsint(var, flag, result);

struct TS3Vari abl es* var;
int flag;

16



TeamSpeak 3 Server
SDK Developer Manual

int* result;

Query parameter of the struct TS3Var i abl es asuint64:
unsi gned int ts3server_getVariabl eAsU nt64(var, flag, result);
struct TS3Vari abl es* var;

int flag;
ui nt 64* result;

Query parameter of the struct TS3Var i abl es asstring:
unsi gned int ts3server_getVariabl eAsString(var, flag, result);
struct TS3Vari abl es* var;

int flag;
char** result;

Set parameter of the struct TS3Var i abl es asinteger:
unsi gned int ts3server_setVariabl eAsInt(var, flag, value);
struct TS3Vari abl es* var;

int flag;
i nt val ue;

Set parameter of the struct TS3Var i abl es asuint64:
unsi gned int ts3server_setVari abl eAsU nt 64(var, flag, value);
struct TS3Vari abl es* var;

int flag;
ui nt 64 val ue;

Set parameter of the struct TS3Var i abl es asstring:
unsi gned int ts3server_setVariabl eAsString(var, flag, value);

struct TS3Vari abl es* var;
int flag;
const char* val ue;

All these functions return ERROR_ok on success, otherwise an error code asdefined inpubl i ¢_errors. h.

17



TeamSpeak 3 Server
SDK Developer Manual

Example setting the virtual server name:

if(ts3server_setVariabl eAsString(vars, VIRTUALSERVER NAME, "My Server") != ERROR ok) {
printf("Failed to set virtual server name: %\n", error);
}

After setting global virtual server parameterswe are ready toinitialize the channel tree. In aloop, for each channel you retrieve
astruct TS3Channel Cr eat i onPar ans and fill it with the desired channel parameters, including the channel 1D.

E Note
The number of created channels must match exactly the previously defined channel Count in
t s3server _set Vi rtual Server Creat i onPar ans.

For each channel get the channel creation param for the given channel index. This channel param structs are subobjects created
inside the server creation params, so do not delete them.

unsi gned i nt
t s3server _get Vi rtual Server Creat i onPar ansChannel Cr eat i onPar ans(vi rtual Server Cr eat i onPar ans,
channel 1 dx, result);

struct TS3Virtual Server Creati onParans* virtual Server Cr eati onPar ans;
unsi gned int channel | dx;
struct TS3Channel Creati onParanms** result;

e virtual Server Creati onPar ans

Address of the struct TS3Virtual Server Creati onParans, which was created earlier with
ts3server _makeVirtual Server Creati onPar ans.

channel | dx

Index of the channel we want to address. Index must be in range of the previously specified channel Count of thisvirtua
server.

result
Address of astruct TS3Channel Cr eat i onPar ans, which we are going to fill in the next step.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

Once we have astruct TS3Channel Cr eat i onPar ans for thischannel, we can start to fill it in two steps. Step 1 is setting
the essential data, step 2 is setting optional additional data.

Essential parameters are channel parent ID and channel ID. Set them with

unsi gned int ts3server_set Channel Creati onParans(channel Creati onParanms, channel Par -
ent| D, channel ID);

18



TeamSpeak 3 Server
SDK Developer Manual

struct TS3Channel Creati onParans* channel Creati onPar ans;
ui nt 64 channel Par ent | D;
ui nt 64 channel | D;

* channel Creati onPar ans
Address of the struct TS3Channel Cr eat i onPar ans, where the parameters should be set.
channel Parent | D
ID of the parent channel. Set O to create this as top-level channel.
channel I D

ID of the channel to create. Thisallowsyou to setup acomplete channel tree with predefined channel 1Ds, unlike the legacy
way to create channels where the channel ID is automatically assigned by the server.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

After setting the essential parameters, we can set optional additional parameters in a way similar as
above for the virtual server. Retrieve a struct TS3Vari abl es for this channel and fill it with the
above mentioned functions ts3server_setVari abl eAslnt, ts3server_setVariabl eAsU nt64 and
ts3server_set Vari abl eAsStri ng.

Retrieve astruct TS3Var i abl es with

unsi gned int ts3server_get Channel Creati onParansVari abl es(channel Creati onParans, re-
sult);

struct TS3Channel Creati onParans* channel Creati onPar ans;
struct TS3Vari abl es** result;

* channel Creati onPar ans
Address of the struct TS3Channel Cr eat i onPar ans, for which we want to retrieve the TS3Var i abl es.
result
Addressto be filled with the struct TS3Var i abl es wewant to retrieve.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

Finally, after setting up server and channel parameters, create the virtual server including the channel tree in one step with

unsi gned int ts3server_createVirtual Server2(virtual ServerCreationParans, flags, re-
sult);

struct TS3Virtual Server Creati onParans* virtual Server Creati onPar ans;

19



TeamSpeak 3 Server
SDK Developer Manual

enum Vi rtual Server Creat eFl ags fl ags;
ui nt 64* result;

* virtual ServerCreati onPar ans
Address of the struct TS3Vi rt ual Ser ver Cr eat i onPar ans with the creation parameters for this virtual server.
flags

Definesif the server password is passed as plaintext or already encrypted. If already encrypted, thisisthe password retrieved
viathe server variable VI RTUALSERVER PASSWORD, which is returned as encrypted password. In this case you would
specify the password on server creation as aready encrypted to avoid the server encrypting it a second time.

enum Vi rt ual Server Cr eat eFl ags{
VI RTUALSERVER _CREATE_FLAG_NONE
VI RTUALSERVER_CREATE_FLAG_PASSWORDS_ENCRYPTED

0x0000,
0x0001,

1
result
Addressto be filled with the created virtual server ID.

Returns ERROR _ok on success, otherwise an error code asdefined inpubl i ¢_errors. h.

Retrieve and store information

The Server Lib stores various pieces of information, which is made available to the custom server. This chapter covers how
to query and store datain the Server Lib.

All strings passed to and from the Server Lib need to be encoded in UTF-8 format.
Client information

Query client information

Information about the clients currently connected to this virtual server can be retrieved and modified. To query client related
information, use one of the following functions. The client isidentified by the parameter cl i ent | D. The parameter f | ag
is defined by the enum ClientProperties.

unsigned int ts3server_getCientVariableAslint(serverlD, clientlD, flag, result);

ui nt 64 serverl D,

anyl D clientlD
ClientProperties flag;
int* result;

unsigned int ts3server_getCientVariableAsString(serverlD, clientlD, flag, result);

ui nt 64 serverl D;
anyl D clientlD;

20



TeamSpeak 3 Server
SDK Developer Manual

ClientProperties flag;
char** result;

* serverlD
The ID of the virtual server on which the client property is queried.
e clientlD
ID of the client whose property is queried.
- flag
Client propery to query, see below.
* result

Address of avariable that receives the result value asint or string, depending on which function is used. In case of a string,
memory must bereleased usingt s3ser ver _freeMenory, unlessan error occured.

Returns ERROR _ok on success, otherwise an error code as defined in publ i c_error s. h. For the string version: If an
error has occured, the result string is uninitialized and must not be released.

The parameter f | ag specifies the type of queried information. It is defined by the enum ClientProperties:

enum Client Properties {

CLI ENT_UNI QUE_I DENTI FI ER = 0, //automatically up-to-date for any client "in view', can be used

//to identify this particular client installation

CLI ENT_NI CKNAME, //automatically up-to-date for any client "in view

CLI ENT_VERSI ON, //for other clients than ourself, this needs to be requested
/1 (=> requestdientVari abl es)

CLI ENT_PLATFORM //for other clients than ourself, this needs to be requested
/1 (=> requestdientVari abl es)

CLI ENT_FLAG_TALKI NG, //automatically up-to-date for any client that can be heard
/1 (in room/ whisper)

CLI ENT_I NPUT_MJTED, //automatically up-to-date for any client "in view', this clients
// m crophone nute status

CLI ENT_OUTPUT_MUJTED, //automatically up-to-date for any client "in view', this clients
/I headphones/ speakers mute status

CLI ENT_OUTPUTONLY_MJTED //automatically up-to-date for any client "in view', this clients
/I headphones/ speakers only nute status

CLI ENT_I NPUT_HARDWARE, //automatically up-to-date for any client "in view', this clients
// m crophone hardware status (is the capture devi ce opened?)

CLI ENT_OUTPUT_HARDWARE, //automatically up-to-date for any client "in view', this clients
/I headphone/ speakers hardware status (is the playback device opened?)

CLI ENT_I NPUT_DEACTI VATED, //only usable for ourself, not propagated to the network

CLI ENT_I DLE_TI ME, //internal use

CLI ENT_DEFAULT_CHANNEL, /lonly usable for ourself, the default channel we used to connect

//on our |ast connection attenpt
CLI ENT_DEFAULT_CHANNEL_PASSWORD, / /i nt er nal use

CLI ENT_SERVER_PASSWORD, //internal use

CLI ENT_META_DATA, /lautomatically up-to-date for any client "in view', not used by
/| Teantpeak, free storage for sdk users

CLI ENT_I S_MJTED, //only make sense on the client side locally, "1" if this client is
//currently nuted by us, "0" if he is not

CLI ENT_I S_RECORDI NG, //automatically up-to-date for any client "in view

CLI ENT_VCOLUME_MODI FI CATOR, //internal use

CLI ENT_VERSI ON_SI GN, //internal use

CLI ENT_SECURI TY_HASH, //SDK only: Hash is provided by an outside source. A channel wll

21



TeamSpeak 3 Server
SDK Developer Manual

//use the security salt + other client data to cal cul ate a hash,
//whi ch must be the same as the one provided here.
CLI ENT_ENCRYPTI ON_ClI PHERS, //SDK only: list of available ciphers send to the server
CLI ENT_ENDMARKER,

CLI ENT_UNI QUE_I DENTI FI ER

String: Unique ID for this client. Stays the same after restarting the application, so you can use this to identify individual
USers.

CLI ENT_NI CKNAVE

Nickname used by the client

CLI ENT_VERSI ON

Application version used by this client.

CLI ENT_PLATFORM

Operating system used by this client.

CLI ENT_FLAG TALKI NG

Set when the client is currently talking. Always available for visible clients.
CLI ENT_I NPUT_MJTED

Indicates the mute status of the clients capture device. Possible values are defined by the enum Mutel nputStatus.
CLI ENT_OUTPUT_MJTED

Indicates the combined mute status of the clients playback and capture devices. Possible values are defined by the enum
MuteOutputStatus. Always available for visible clients.

CLI ENT_OUTPUTONLY_MJTED

Indicates the mute status of the clients playback device. Possible values are defined by the enum MuteOutputStatus. Always
availablefor visible clients.

CLI ENT_I NPUT_HARDWARE

Set if the clients capture device is not available. Possible values are defined by the enum Hardwarel nputStatus.
CLI ENT_OUTPUT _HARDWARE

Set if the clients playback device is not available. Possible values are defined by the enum HardwareOutputStatus.
CLI ENT_I NPUT_DEACTI VATED

Set when the capture device has been deactivated as used in Push-To-Talk. Possible values are defined by the enum Input-
DeactivationStatus. Only available to client, not propagated to the server.

CLI ENT_I DLE_TI ME

Timetheclient hasbeenidle.

22



TeamSpeak 3 Server
SDK Developer Manual

e CLI ENT_TYPE

Indicatesif the given client isanorma TeamSpeak 3 client or a connection established by the ServerQuery application.
e CLI ENT_DEFAULT_CHANNEL

CLI ENT_DEFAULT_CHANNEL _PASSWORD

Default channel name and password used in the last t s3server _start Connecti on call. Only available for own
client.

« CLI ENT_META DATA
Not used by TeamSpeak 3, offers free storage for SDK users.
« CLIENT_I S MJTED
Indicates aclient has been locally muted witht s3ser ver _r equest Mut eC i ent s. Client-side only.
« CLI ENT_I S_RECORDI NG
Indicates aclient is currently recording all voice datain his channel.
e CLI ENT_VOLUME_MODI FI CATOR
The client volume modifier set by t s3cl i ent _set d i ent Vol uneModi fi er.
« CLI ENT_SECURI TY_HASH

Contains client security hash (optional feature). Thishashisused to check if thisclient isallowed to enter specified channels
with amatching CHANNEL _SECURI TY_SALT. Motivation isto enforce clientsjoining a server with the specific identity,
nickname and metadata.

Please see Security salts and hashes for details.

Generally al types of information can be retrieved as both string or integer. However, in most cases the expected datatypeis
obvious, like querying CL1 ENT_NI CKNAME will clearly require to store the result as string.

Example: Query nickname of client with ID 123:

unsigned int error;

anylD clientID = 123; /* Client IDin our exanple */

char* ni cknane;

if((error = ts3server_getCientVariabl eAsString(serverlD, clientlD, CLIENT_N CKNAME, &nicknane)) != ERROR ok) {
printf("Error querying client nickname: %\ n", error);

return;

}

printf("Cient nickname is: %\n", nicknane);
t s3server _freeMenory(ni cknane);

Setting client information

Client information can be modified with

23



TeamSpeak 3 Server
SDK Developer Manual

unsi gned int ts3server_setdientVariableAslint(serverlD, clientlD, flag, value);
ui nt 64 serverl D,
anyl D clientlD

CientProperties flag;
i nt val ue;

unsi gned int ts3server_setCientVariableAsString(serverlD, clientlD, flag, value);
ui nt 64 serverl D,
anyl D clientlD

CientProperties flag;
const char* val ue;

e serverlD
ID of the virtual server on which the client property should be changed.
e clientlD
ID of the client whose property should be changed.
« flag
Client propery to query, see above.
* val ue
Vauethe client property should be changed to.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

2 | mportant

After modifying one or more client variables, you must flush the changes.
unsigned int ts3server_flushdientVariable(serverlD, clientlD);

ui nt 64 serverl D;
anyl D clientlD;

The idea behind flushing is, one can modify multiple values by callingt s3server _set C i ent Vari abl eAsStri ng
andt s3server_set i ent Vari abl eAsl nt and then apply all changesin one step.

For example, to change the nickname of the client with ID 55 to “ Joe”:
anylD clientID = 55; /* Client IDin our exanple */

/* Modifiy data */
if(ts3server_setdientVariabl eAsString(serverl D, clientlD, CLIENT_N CKNAME, "Joe") != ERROR ok) {

24



TeamSpeak 3 Server
SDK Developer Manual

printf("Error setting client nicknane\n");
return;

}

/* Flush changes
if(ts3server_flushdientVariable(serverlD, clientlD) != ERROR ok) {
printf("Error flushing client variable\n");

}

Example for applying two changes:

anylD clientID = 66; /* Client IDin our exanple */

/* Modify data 1 */

if(ts3server_setCientVariabl eAslnt(scHandl erI D, clientlD, CLIENT_AWAY, AWAY_ZZZ) != ERROR ok) {
printf("Error setting away node\n");

return;

}

/* Modify data 2 */

if(ts3server_setCientVariabl eAsString(scHandl erI D, clientlD, CLIENT_AWAY_MESSAGE, "Lunch") != ERROR ok) {
printf("Error setting away nessage\n");
return;

}

/* Flush changes */
if(ts3server_flushCientVariable(scHandlerI D, clientlD) != ERROR ok) {
printf("Error flushing client variable");

}
Whisper lists

A client with awhisper list set can talk to the specified clients and channels. Whisper lists can be defined for individual clients.
A whisper list consists of an array of client IDs and/or an array of channel 1Ds.

unsi gned int ts3server_setdientWisperList(serverlD, clID, channellD, clientlD);
ui nt 64 serverlD;
anyl D cl I D

const ui nt64* channel | D,
const anylD* clientlD;

* serverlD
ID of the virtual server on which the whisper list is set.
e clID
ID of the client whose whisper list is set.
* channel I D
NULL-terminated array of channel IDs. These channels will be added to the clients whisper list.
Pass NULL for an empty list.

e clientID

25



TeamSpeak 3 Server
SDK Developer Manual

NULL-termianted array of client IDs. These clients will be added to the clients whisper list.
Pass NULL for an empty list.

Returns ERROR _ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

Channel information

Query channel information

Querying and modifying information related to channelsis similar to dealing with clients. The parameter f | ag is defined by
the enum Channel Properties. The functions to query channel information are:

unsi gned int ts3server_get Channel Vari abl eAslint (serverl D, channell D, flag, result);

ui nt 64 serverl D,

ui nt 64 channel | D;
Channel Properties flag;
int* result;

unsigned int ts3server_get Channel Vari abl eAsString(serverl D, channellD, flag, re-
sult);

ui nt 64 serverl D,

ui nt 64 channel | D
Channel Properties flag;
char** result;

* serverlD
ID of the virtual server on which the channel property is queried.
* channel I D
ID of the queried channel.
- flag
Channel propery to query, see below.
* result

Address of a variable which receives the result value as int or string, depending on which function is used. In case of a
string, memory must be released usingt s3ser ver _freeMenory, unlessan error occured.

Returns ERROR _ok on success, otherwise an error code as defined in publ i c_errors. h. For the string version: If an
error has occured, the result string is uninitialized and must not be released.

The parameter f | ag specifies the type of queried information. It is defined by the enum Channel Properties:

26



TeamSpeak 3 Server
SDK Developer Manual

enum Channel Properties {

CHANNEL_NAME = O, // Avail able for all channels that are "in view', always up-to-date
CHANNEL_TOPI C, /1 Avail able for all channels that are "in view', always up-to-date
CHANNEL_DESCRI PTI ON, /1 Must be requested (=> request Channel Descri ption)

CHANNEL_ PASSWORD, //not available client side

CHANNEL_ CODEC, /1 Avail able for all channels that are "in view', always up-to-date
CHANNEL_CODEC_QUALI TY, // Avail able for all channels that are "in view', always up-to-date
CHANNEL_MAXCLI ENTS, // Avail able for all channels that are "in view', always up-to-date
CHANNEL_MAXFAM LYCLI ENTS, /1 Avail able for all channels that are "in view', always up-to-date
CHANNEL _ ORDER, // Avail able for all channels that are "in view', always up-to-date
CHANNEL_FLAG_PERMANENT, // Avail able for all channels that are "in view', always up-to-date
CHANNEL_FLAG _SEM _PERVMANENT, //Available for all channels that are "in view', always up-to-date
CHANNEL_FLAG DEFAULT, //Avail able for all channels that are "in view', always up-to-date
CHANNEL _FLAG_PASSWORD, // Avail able for all channels that are "in view', always up-to-date
CHANNEL_CODEC LATENCY_FACTOR, //Available for all channels that are "in view', always up-to-date

i

CHANNEL_CODEC | S_UNENCRYPTED, //Available for all channels that are "in view', always up-to-date
CHANNEL_SECURI TY_SALT, //Sets the options+salt for security hash (SDK only)

CHANNEL _DELETE_DELAY, // How many seconds to wait before deleting this channel
CHANNEL _ ENDMARKER,

« CHANNEL_NANE

String: Name of the channel.
« CHANNEL_TOPI C

String: Single-line channel topic.
* CHANNEL_DESCRI PTI ON

String: Optional channel description. Can have multiple lines.
+ CHANNEL_PASSWORD

String: Password for password-protected channels.

If apassword is set or removed by modifying this field, CHANNEL_FLAG_PASSWORD will be automatically adjusted.
« CHANNEL_CODEC

Int: Codec used for this channel:

* 0- Speex Narrowband (8 kHz)

1 - Speex Wideband (16 kHz)

2 - Speex Ultra-Wideband (32 kHz)

3 - Celt (Mono, 48kHz)

4 - Opus Voice (Mono, 48khz)

5 - Opus Music (Stereo, 48khz)
e CHANNEL_CODEC QUALI TY

Int (0-10): Quality of channel codec of this channel. Valid values range from 0 to 10, default is 7. Higher values result in
better speech quality but more bandwidth usage.

27



TeamSpeak 3 Server
SDK Developer Manual

CHANNEL _MAXCLI ENTS

Int: Number of maximum clients who can join this channel.

CHANNEL _MAXFAM LYCLI ENTS

Int: Number of maximum clients who can join this channel and all subchannels.
CHANNEL _ CRDER

Int: Defines how channels are sorted in the GUI. Channel order isthe ID of the predecessor channel after which this channel
isto be sorted. If O, the channel is sorted at the top of its hirarchy.

CHANNEL _FLAG _PERMANENT / CHANNEL_FLAG_SEM _ PERMANENT
Concerning channel durability, there are three types of channels:
» Temporary

Temporary channels have neither the CHANNEL _ FLAG_PERMANENT nor CHANNEL _FLAG_SEM _ PERMANENT flag
set. Temporary channels are automatically deleted by the server after the last user hasleft and the channel isempty. They
will not be restored when the server restarts.

 Semi-permanent

Semi-permanent channels are not automatically deleted when the last user left but will not be restored when the server
restarts.

e Permanent
Permanent channels will be restored when the server restarts.
CHANNEL FLAG DEFAULT

Int (0/1): Channel isthe default channel. There can only be one default channel per server. New userswho did not configure
achannel tojoinonloginint s3server _start Connect i on will automatically join the default channel.

CHANNEL _FLAG _PASSWORD
Int (O/1): If set, channel is password protected. The password itself is stored in CHANNEL _PASSWORD.
CHANNEL _CODEC _LATENCY_FACTOR

(Int: 1-10): Latency of this channel. This allows to increase the packet size resulting in less bandwidth usage at the cost of
higher latency. A value of 1 (default) isthe best setting for lowest latency and best quality. If bandwidth or network quality
are restricted, increasing the latency factor can help stabilize the connection. Higher latency values are only possible for
low-quality codec and codec quality settings.

For best voice quality alow latency factor is recommended.
CHANNEL CODEC | S _UNENCRYPTED

Int (0/2): If 1, thischannel is not using encrypted voice data. If 0, voice datais encrypted for this channel. Note that channel
voice data encryption can be globally disabled or enabled for the virtual server. Changing this flag makes only sense if
global voice data encryption is set to be configured per channel as CODEC_ENCRYPTI ON_PER_CHANNEL (the default
behaviour).

28



TeamSpeak 3 Server
SDK Developer Manual

* CHANNEL_SECURI TY_SALT

Contains the channels security salt (optional feature). When a client connects, the clients hash value in
CLI ENT_SECURI TY_HASH is check against the channel salt to allow or deny the client to join this channel. Motivation
isto enforce clients joining a server with the specific identity, nickname and metadata.

Please see Security salts and hashes for details.
« CHANNEL_DELETE_DELAY
This parameter defines how many seconds the server waits until atemporary channel is deleted when empty.

When a temporary channel is created, atimer is started. If a user joins the channel before the countdown is finished, the
channel is not deleted. After the last person has |eft the channel, the countdown starts again. CHANNEL _DEL ETE_DELAY
defines the length of this countdown in seconds.

Example 1: Query topic of channel with ID 123:

ui nt 64 channel I D = 123; /* Channel ID in our exanpel */
char topic;

i f(ts3server_get Channel Vari abl eAsString(serverl D, channel, CHANNEL_TOPI C, &t opic) == ERROR ok) {
printf("Topic of channel % is: %\n", channellD, topic);
ts3server _freeMenory(topic);

}

Setting channel information

Channel properties can be modified with:;

unsi gned int ts3server_set Channel Vari abl eAsl nt (server| D, channel ID, flag, value);

ui nt 64 serverl D,

ui nt 64 channel | D
Channel Properties flag;
i nt val ue;

unsi gned i nt ts3server_set Channel Vari abl eAsString(serverl D, channel I D, flag, val ue);

ui nt 64 serverl D,

ui nt 64 channel | D;
Channel Properties flag;
const char* val ue;

e server Connecti onHandl er|I D
ID of the virtual server on which the information for the specified channel should be changed.
e channel I D

ID of the channel whoses property should be changed.

29



TeamSpeak 3 Server
SDK Developer Manual

- flag
Channel propery to change, see above.
* val ue
Vaue the channel property should be changed to.

Returns ERROR _ok on success, otherwise an error code asdefined inpubl i ¢_errors. h.

f | mportant

After modifying one or more channel variables, you must flush the changes.
unsi gned int ts3server_flushChannel Vari abl e(serverI D, channellD);

ui nt 64 serverl D,
ui nt 64 channel | D;

Example: Change the channel name and topic:
/* Modi fy channel nanme */

i f(ts3server_set Channel Vari abl eAsString(serverl D, channel | D, CHANNEL_NAME, "New channel nane") != ERROR ok) {
printf("Error setting channel name\n");
}

/* Modi fy channel topic */

i f(ts3server_set Channel Vari abl eAsString(serverl D, channel |l D, CHANNEL_TOPI C, "New channel topic") != ERROR ok) {
printf("Error setting channel topic\n");

}

/* Flush changes */

i f(ts3server_flushChannel Vari abl e(serverl D, channel D) != ERROR ok) {
printf("Error flushing channel variable\n");

}

Server information

Query server information
Information related to a virtual server can be queried with::
unsi gned int ts3server_getVirtual ServerVari abl eAsInt(serverI D, flag, result);

ui nt 64 serverl D,
Vi rtual ServerProperties flag;
int* result;

unsi gned int ts3server_getVirtual ServerVari abl eAsString(serverl D, flag, result);

ui nt 64 serverlD;
Vi rtual ServerProperties flag;
char** result;

30



TeamSpeak 3 Server
SDK Developer Manual

* serverlD

ID of the virtual server of which the property is queried.
- flag

Virtual server propery to query, see below.
* result

Address of a variable which receives the result value as int or string, depending on which function is used. In case of a
string, memory must be released usingt s3ser ver _freeMenory, unlessan error occured.

Returns ERROR _ok on success, otherwise an error code as defined in publ i c_errors. h. For the string version: If an
error has occured, the result string is uninitialized and must not be released.

The parameter f | ag specifies the type of queried information. It is defined by the enum Virtual ServerProperties:

enum Vi rtual Server Properties {
VI RTUALSERVER_UNI QUE_I DENTI FI ER = 0, //avail abl e when connected, can be used to identify this particular
//server installation

VI RTUALSERVER_NAME, |/ avail abl e and al ways up-to-date when connected

VI RTUALSERVER_WEL COVEMESSACE, /lavai |l abl e when connected, not updated while connected

VI RTUALSERVER_PLATFORM /l avai | abl e when connect ed

VI RTUALSERVER_VERSI ON, /l avai | abl e when connect ed

VI RTUALSERVER_MAXCLI ENTS, /lonly avail abl e on request (=> request ServerVari abl es), stores the
[/ maxi mum nunber of clients that may currently join the server

VI RTUALSERVER_PASSWORD, //not available to clients, the server password

VI RTUALSERVER_CLI ENTS_ONLI NE, /lonly avail abl e on request (=> requestServerVari abl es),

VI RTUALSERVER_CHANNELS_ ONLI NE, /lonly avail abl e on request (=> requestServerVari abl es),

VI RTUALSERVER_CREATED, /lavail abl e when connected, stores the tine when the server was created

VI RTUALSERVER_UPTI ME, /lonly avail abl e on request (=> requestServerVariables), the tine

//since the server was started
VI RTUALSERVER_CCDEC_ENCRYPTI ON_MCDE, //avail abl e and al ways up-to-date when connected
VI RTUALSERVER_ENCRYPTI ON_CI PHERS, //SDK only: list of ciphers that can be used for encryption
VI RTUALSERVER_ENDVARKER,

* VI RTUALSERVER _UNI QUE_| DENTI FI ER
Unique ID for thisvirtual server. Stays the same after restarting the server application.
* VI RTUALSERVER NANE
Name of this virtual server.
e VI RTUALSERVER WEL COMEMESSAGE
Optiona welcome message sent to the client on login.
* VI RTUALSERVER PLATFORM
Operating system used by this server.
¢ VI RTUALSERVER VERSI ON

Application version of this server.

31



TeamSpeak 3 Server
SDK Developer Manual

* VI RTUALSERVER MAXCLI ENTS

Defines maximum number of clients which may connect to this server.
* VI RTUALSERVER PASSWORD

Optional password of this server.
e VI RTUALSERVER _CLI ENTS_ONLI NE

VI RTUALSERVER_CHANNELS_ ONLI NE

Number of clients and channels currently on this virtual server.
* VI RTUALSERVER_CREATED

Time when this virtual server was created.
¢ VI RTUALSERVER UPTI VE

Uptime of thisvirtual server.
* VI RTUALSERVER CODEC_ENCRYPTI ON_MODE

Defines if voice data encryption is configured per channel, globally forced on or globally forced off for this
virtual server. The default behaviour is configure per channel, in this case modifying the channel property
CHANNEL _CCODEC_| S_UNENCRYPTED defines voice data encryption of individua channels.

Virtual server encryption mode can be set to the following parameters:
enum CodecEncrypti onMbde {

CODEC_ENCRYPTI ON_PER_CHANNEL = 0,

CODEC_ENCRYPTI ON_FORCED_CFF,

CODEC_ENCRYPTI ON_FORCED_ON,
b

This property is always available when connected.
* VI RTUALSERVER _ENCRYPTI ON_CI PHERS

Comma-separated list of ciphers that are used for encrypting the connection. The server uses the left most cipher in
VI RTUALSERVER _ENCRYPTI ON_CI PHERS that isalsodefinedin CLI ENT_ENCRYPTI ON_CI PHERS of the connect-
ing client.

Possible values are:

" AES- 128"
" AES- 256"

Default is"AES-256,AES-128".

Example checking the number of clients online, obviously an integer value:
int clientsOnline;

if(ts3server_getVirtual ServerVari abl eAsl nt (server| D, VI RTUALSERVER CLI ENTS_ONLI NE,
&clientsOnline) == ERROR 0k)

32



TeamSpeak 3 Server
SDK Developer Manual

printf("There are % clients online\n", clientsOnline);

In addition to the virtual server propertiesin the publ i c_defi ni ti ons. h header there are extended properties used for
filetransfer found in a seperate header filepubl i c_sdk_defi ni ti ons. h.

enum Vi rtual Server Properti esSDK {

VI RTUALSERVER_FI LEBASE=24, //not available to clients, stores the folder used for file tra
VI RTUALSERVER_MAX_DOMLOAD_TOTAL_BANDW DTH = 29, //only avail abl e on request (=> request Server Vari abl es)
VI RTUALSERVER_MAX_UPLQAD_TOTAL_BANDW DTH= 30, //only avail abl e on request (=> request Server Vari abl es)

VI RTUALSERVER_LOG_FI LETRANSFER=64,

* VI RTUALSERVER _FI LEBASE

Base folder where to thefile storage islocated on thisvirtual server, seet s3ser ver _enabl eFi | eManager . Thefile-
base can be queried or set (beforeinitializing filetransfer witht s3ser ver _enabl eFi | eManager ) with this property.

* VI RTUALSERVER _MAX_DOMLCAD_TOTAL_BANDW DTH

Defines the maximum allowed bandwidth for downloadioad. Set this property before creating the server with
ts3server _initServerlLib.

* VI RTUALSERVER_MAX_UPLOAD_TOTAL_BANDW DTH

Defines the maximum alowed bandwidth for upload. Set this property before creating the server with
ts3server _initServerlLib.

* VI RTUALSERVER LOG_FI LETRANSFER

Set to true to enable logging filetransfer actions to the logfile.

Setting server information

Change server variables with the following functions:
unsi gned int ts3server_setVirtual ServerVari abl eAsInt (serverI D, flag, value);

ui nt 64 serverlD;
Channel Properties flag;
i nt val ue;

unsi gned int ts3server_setVirtual ServerVari abl eAsString(serverl D, flag, value);
ui nt 64 serverl D,

Channel Properties flag;
const char* val ue;

e serverlD

ID of the virtual server of which the property should be changed.

33



TeamSpeak 3 Server
SDK Developer Manual

- flag
Virtual server propery to change, see above.
* val ue
Vauethe virtual server property should be changed to.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

f | mportant

After modifying one or more server variables, you must flush the changes.
unsi gned int ts3server_flushVirtual ServerVari abl e(serverlD);

ui nt 64 serverl D;

Example: Change the servers welcome message:

if(ts3server_setVirtual ServerVari abl eAsString(serverl D, VI RTUALSERVER WVEL COVEMESSAGE,

"New wel cone nmessage") != ERROR ok) {
printf("Error setting server wel comenessage\n");
return;
}
if(ts3server_flushVirtual ServerVari abl e(serverl D) != ERROR ok) {

printf("Error flushing server variable\n");

}

Bandwidth information

The server offers information about the currently used bandwidth.

The following set of connection properties can be queried:

» CONNECTI ON_PACKETS_SENT_TOTAL

» CONNECTI ON_BYTES_SENT_TOTAL

+ CONNECTI ON_PACKETS_RECEI VED _TOTAL

» CONNECTI ON_BYTES_RECEI VED TOTAL

+ CONNECT! ON_BANDW DTH_SENT_LAST_SECOND TOTAL

+ CONNECT! ON_BANDW DTH_SENT_LAST_M NUTE_TOTAL

+ CONNECTI ON_BANDW DTH_RECEI VED LAST_SECOND TOTAL

» CONNECTI ON_BANDW DTH_RECEI VED_LAST_M NUTE_TOTAL

In addition to the common connection properties, if filetransfer isenabled, thefollowing fil etransfer extraconnection properties
are available.




TeamSpeak 3 Server
SDK Developer Manual

e CONNECTI ON_FI LETRANSFER _BANDW DTH_SENT
How many bytes per second are currently being sent by file transfers
e CONNECTI ON_FI LETRANSFER _BANDW DTH_RECEI VED
How many bytes per second are currently being received by file transfers
« CONNECTI ON_FI LETRANSFER BYTES_RECEI VED_TOTAL
How many bytes we received in total through file transfers
e CONNECTI ON_FI LETRANSFER _BYTES SENT_TOTAL

How many bytes we sent in total through file transfers

The connection information can be queried with the following two functions:

unsigned int ts3server_getVirtual ServerConnectionVari abl eAsUl nt 64(server| D, flag,
result);

ui nt 64 serverlD;
enum Connecti onProperties flag;
ui nt 64* result;

unsigned int ts3server_getVirtual ServerConnectionVari abl eAsDoubl e(serverI D, fl ag,
result);

ui nt 64 serverl D,
enum Connecti onProperties flag;
doubl e* result;
e serverlD
Server ID
- flag
One of the above listed connection properties.

e result

Address of avariable that receives the result value as uint64 (unsigned 64-bit integer) or double type, depending on which
of the two functions was used.

Both functions return ERROR_ok on success, otherwise an error code as defined inpubl i c_errors. h.

Channel and client manipulation

The Server Lib offers a subset of client-side functionality to create, move and delete channels directly on the server.

35



TeamSpeak 3 Server
SDK Developer Manual

Creating a new channel

To create a channel, first set the desired channel variables using t s3ser ver _set Channel Vari abl eAsl nt and
t s3server _set Channel Vari abl eAsSt ri ng. Pass zero as the channel 1D parameter.

Next send the request to the server by calling:
unsi gned int ts3server_flushChannel Creation(serverl D, channel Parentl D, result);

ui nt 64 serverl D,
ui nt 64 channel Parent | D;
ui nt 64* result;

e serverl D
ID of the virtual server on which that channel should be created.
e channel Parent| D

ID of the parent channel, if the new channel is to be created as subchannel. Pass zero if the channel should be created as
top-level channel.

e result
Address of avariable that receives the ID of the newly created channel.
Returns ERROR_ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

Example code to create a channel:
#defi ne CHECK_ERROR(x) if((error = x) != ERROR ok) { goto on_error; }

int createChannel (uint64 serverl D, uint64 parentChannel ID, const char* name, const char* topic,
const char* description, const char* password, int codec, int codecQuality,
int mxCients, int familyMaxdients, int order, int perm int sem perm
int default) {
unsigned int error;
ui nt 64 newChannel | D;

/* Set channel data, pass 0 as channel 1D */

CHECK_ERROR(t s3server_set Channel Vari abl eAsStri ng(serverl D,
CHECK_ERROR(t s3server_set Channel Vari abl eAsStri ng(serverl D,
CHECK_ERROR(t s3server_set Channel Vari abl eAsStri ng(serverl D,
CHECK_ERROR(t s3server_set Channel Vari abl eAsStri ng(serverl D,
CHECK_ERROR(t s3server_set Channel Vari abl eAsl nt (serverl D,
CHECK_ERROR(t s3server_set Channel Vari abl eAsl nt (serverl D,
CHECK_ERROR(t s3server _set Channel Vari abl eAsl nt (serverl D,
CHECK_ERROR(t s3server_set Channel Vari abl eAsl nt (serverl D,
CHECK_ERROR(t s3server_set Channel Vari abl eAsl nt (serverl D,
CHECK_ERROR(t s3server_set Channel Vari abl eAsl nt (serverl D,
CHECK_ERROR(t s3server_set Channel Vari abl eAsl nt (serverl D,
CHECK_ERROR(t s3server_set Channel Vari abl eAsl nt (serverl D,

CHANNEL_NAME, nane));

CHANNEL_TOPI C, topic));

CHANNEL_DESCRI PTI ON, description));
CHANNEL_PASSWORD, password));
CHANNEL_CODEC, codec));

CHANNEL_CODEC _QUALI TY, codecQuality));
CHANNEL_MAXCLI ENTS, nmexdients));
CHANNEL_MAXFAM LYCLI ENTS, fam | yMaxdients));
CHANNEL_ORDER, order));

CHANNEL_FLAG PERVANENT, perm);
CHANNEL_FLAG_SEM _PERVANENT, semi perm));
CHANNEL_FLAG DEFAULT, default));

[eNelelcloleNeloleNelole)

/* Flush changes to server */
CHECK_ERROR(t s3server_flushChannel Creati on(serverl D, parentChannel | D, &ewChannel ID));

printf("Created new channel with ID: %\n", newChannel|D);

36



TeamSpeak 3 Server
SDK Developer Manual

return 0; /* Success */

on_error:
printf("Error creating channel: %l\n", error);
return 1; /* Failure */

}

After creating a channel, the event onChannel Cr eat ed iscalled.

Alternative way to create a new channel

Thereisan aternative APl available for channel creation, which isvery similar to the alternative virtual server creation API.

The ideais to create a TS3Channel Cr eat i onPar ans, query the attached struct TS3Var i abl es, fill it with desired
parameters and finally call t s3ser ver _cr eat eChannel .

E Note
For a complete exampl e please see the “server_creation_params’ sample code in the SDK package.

Firgt, create a TS3Channel Cr eat i onPar ans with
unsi gned int ts3server_nakeChannel Creati onParans(result);

struct TS3Channel Creati onParans** result;

e result
Address of avariable that receives the created struct TS3Channel Cr eat i onPar ans.

Returns ERROR _ok on success, otherwise an error code as defined in publ i ¢c_errors. h. If an error has occured, the
result struct is uninitialized and must not be released.

Oncewe have astruct TS3Channel Cr eat i onPar ans for this channel, we can start to fill it in two steps. Step 1 is setting
the essential data, step 2 is setting optional additional data.

Essential parameters are channel parent ID and channel ID. Set them with

unsi gned int ts3server_set Channel Creati onParans(channel Creati onParanms, channel Par -
ent| D, channel ID);

struct TS3Channel Creati onParans* channel Creati onPar ans;
ui nt 64 channel Par ent | D;
ui nt 64 channel | D;

e channel Creati onPar ans

Address of the struct TS3Channel Cr eat i onPar ans, where the parameters should be set.

37



TeamSpeak 3 Server
SDK Developer Manual

channel Parent | D
ID of the parent channel. Set 0 to create this as top-level channel.
channel I D

ID of the channel to create. This allows you to setup acomplete channel tree with predefined channel 1Ds, unlike the legacy
way to create channels where the channel 1D is automatically assigned by the server.

Returns ERROR _ok on success, otherwise an error code asdefined inpubl i ¢_errors. h.

After setting the essential parameters, we can set optional additional channel parameters. Retrieve astruct TS3Var i abl es
for this channel and fill it with t s3server _set Vari abl eAslnt, ts3server_set Vari abl eAsUl nt 64 and
t s3server_set Vari abl eAsSt ri ng, as described here.

Retrieve astruct TS3Var i abl es with

unsi gned int ts3server_get Channel Creati onParansVari abl es(channel Creati onParans, re-
sult);

struct TS3Channel Creati onParans* channel Creati onPar ans;
struct TS3Vari abl es** resul t;

* channel Creati onPar ans
Address of the struct TS3Channel Cr eat i onPar ans, for which we want to retrieve the TS3Var i abl es.
resul t
Address to befilled with the struct TS3Var i abl es wewant to retrieve.

Returns ERROR_ok on success, otherwise an error code as defined in publ i ¢_errors. h.

Finally, after setting up channel parameters, create the channel in one step with

unsigned int ts3server_createChannel (serverl D, channel CreationParans, flags, re-
sult);

ui nt 64 serverl D,

struct TS3Channel Creati onParans* channel Creati onPar ans;
enum Channel Cr eat eFl ags fl ags;

ui nt 64* result;

* channel Creati onPar ans
Address of the struct TS3Channel Cr eat i onPar ans with the creation parametersfor this.

flags

38



TeamSpeak 3 Server
SDK Developer Manual

Defines if the channel password is passed as plaintext or already encrypted. If already encrypted, this is the password
retrieved viathe channel variable CHANNEL _ PASSWORD, which isreturned as encrypted password. In this case you would
specify the password on channel creation as aready encrypted to avoid it being encrypted automatically a second time.

enum Channel Cr eat eFl ags{
CHANNEL _ CREATE_FLAG_NONE
CHANNEL _ CREATE_FLAG_PASSWORDS_ENCRYPTED

0x000,
0x001,

}s
result
Address to be filled with the created channel ID.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

Deleting a channel

A channel can be deleted by the server with
unsi gned int ts3server_channel Del ete(serverl D, channel ID, force);

ui nt 64 serverl D,
ui nt 64 channel | D;
int force;

* serverlD

The ID of the virtual server on which the channel should be deleted.
« channel I D

The ID of the channel to be deleted.
« force

If 1, first move all clients inside the specified channel to the default channel and then delete the specific channel. If false,
deleting a channel with joined clients will fail.

If O, the server will refuse to a channel that is not empty.
Returns ERROR_ok on success, otherwise an error code asdefined in publ i ¢_errors. h.

After successfully deleting a channel, the event onChannel Del et ed iscalled for every deleted channel.

Moving a channel

To move a channel to a new parent channel, call
unsi gned int ts3server_channel Mve(serverl D, channel | D, newChannel Parentl|D);

ui nt 64 serverl D,
ui nt 64 channel | D;

39



TeamSpeak 3 Server
SDK Developer Manual

ui nt 64 newChannel Par ent | D;

* serverlD
ID of the virtua server on which the channel should be moved.
* channel I D
ID of the channel to be moved.
* newChannel Parent | D
ID of the parent channel where the moved channel isto be inserted as child. Use 0 to insert as top-level channel.
Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

After the channel has been moved, the event onChannel Edi t ed iscaled.

Moving clients

Clients can be moved server-side to another channel, in addition to the client-side functionality offered by the Client Lib. To
move one or multiple clients to a new channel, call:

unsi gned int ts3server_clientMove(serverl D, newChannel I D, clientlDArray);

ui nt 64 serverl D,
ui nt 64 newChannel | D;
const anyl D* clientl|DArray;

* serverlD
ID of the virtual server on which the client should be moved.
* newChannel I D
ID of the channel in which the clients should be moved into.
* newChannel Parent| D
Zero-terminated array with the IDs of the clients to be moved.
Returns ERROR_ok on success, otherwise an error code asdefined in publ i ¢_errors. h.
After the channel has been moved, the event onCl i ent Moved iscalled.

Example to move asingle client to another channel:

anylD clientlDArray[2]; /* One client plus termnating zero as end-marker */
ui nt 64 newChannel | D;
unsigned int error;

clientl DArray[ 0]
clientl DArray[ 1]

clientID, /* dient to nove */
0; /* End marker */

40



TeamSpeak 3 Server
SDK Developer Manual

if((error = ts3server_clientMve(serverl D, newChannel|D, channellDArray)) != ERROR ok) {
/* Handle error */
return;

}

/* Cdient nmoved successfully */

Events

The server libwill notify the server application about certain actions by sending events as callbacks. Callback function pointers
needsto beinitializedint s3server _i nit Server Li b.

E Note
Your callback implementations should exit quickly to avoid blocking the server. If you require to do lengthly
operations, consider using a new thread to let the callback itself finish as soon as possible.

All strings are UTF-8 encoded.
A client has connected:
voi d ond i ent Connect ed(serverl D, clientlD, channellD, renovedientError);

ui nt 64 serverl D;
anylD clientlD
ui nt 64 channel | D;
unsigned int* renmovedientError;
e serverlD
ID of the virtual server.
e clientID
ID of the connected client.
e channel I D
ID of the channel the client has joined.

« renoveC i ent Error

If the pointer value is ERROR_ok (default), this client will connect normally to the virtual server. To prevent the client
connecting, set the pointer value to any valid error (see the header publ i c_errors. h):

*renoved ientError = ERROR client_insufficient_perm ssions;

If you do not want to block the client, it's best to not modify ther enoveC i ent Err or parameter at all and leave the
default value of ERROR_oK.

A client has disconnected:

voi d ond i ent Di sconnected(serverlI D, clientlD, channellD);

41



TeamSpeak 3 Server
SDK Developer Manual

ui nt 64 serverl D;
anyl D clientlD;
ui nt 64 channel | D;
e serverl D
ID of the virtual server.
e clientlD
ID of the disconnected client.

 channel I D

ID of the channdl the client has | eft.

A client has moved into another channd!:
voi d onC i ent Moved(serverlI D, clientlD, ol dChannell D, newChannel|D);

ui nt 64 serverl D;
anyl D clientlD;
ui nt 64 ol dChannel | D;
ui nt 64 newChannel | D;
e serverl D

ID of the virtual server.
e clientID

ID of the moved client.
e ol dChannel I D

ID of the old channdl the client has | ft.
* newChannel | D

ID of the new channel the client has joined.

A channel has been created:
voi d onChannel Created(serverl D, invokerdientlD, channellD);

ui nt 64 serverl D,
anyl D i nvokerd i ent| D
ui nt 64 channel | D;

e serverl D

42



TeamSpeak 3 Server
SDK Developer Manual

ID of thevirtual server.
e invokerCientlD

ID of theinvoker who created the channel (client or server ID).
« channel I D

ID of the created channel.

A channel has been edited:
voi d onChannel Edit ed(serverI D, invokerdientlD, channellD);
ui nt 64 serverl D,
anyl D i nvokerd i ent | D
ui nt 64 channel | D;
e serverlD
ID of the virtual server.
* invokerCientlD
ID of theinvoker who edited the channel (client or server ID).

e« channel I D

ID of the edited channel.

A channel has been deleted:
voi d onChannel Del et ed(server| D, invokerdientlD, channellD);

ui nt 64 serverl D,
anyl D i nvokerd i ent | D
ui nt 64 channel | D;

» serverlD

ID of the virtual server.
* invokerCientlD

ID of theinvoker who deleted the channel (client or server ID).
* channel I D

ID of the deleted channel.

43



TeamSpeak 3 Server
SDK Developer Manual

Text messages can be received on the server side. Only server and channel chats trigger this event, client-to-client messages
are not caught for privacy reasons.

Server chat messages can be intercepted with:
voi d onServer Text MessageEvent (server| D, invokerdientlD, textMssage);
ui nt 64 serverlD;
anyl D i nvokerd i ent| D
const char* textMessage;
» serverlD
ID of the virtual server.
* invokerCientlD
ID of the client who sent the text message.
e text Message
Message text
Channel chat messages can be intercepted with:

voi d onChannel Text MessageEvent (server|I D, invokerCientlD, targetChannellD, textMes-
sage);

ui nt 64 serverlD;
anyl D i nvokerd i ent| D
ui nt 64 target Channel | D
const char* textMessage;
e serverlD
ID of the virtual server.
 invokerCientlD
ID of the client who sent the text message.
e target Channel I D

ID of the channel in which the text message was sent.

e text Message

Message text

If user-defined logging was enabled when initialzing the Server Lib by passing LogType USERLOGA NG to the used-
LogTypes parameter of t s3server i nit Server Li b, log messages will be sent to the following callback, which al-
lows user customizable logging and handling or critical errors:

44



TeamSpeak 3 Server
SDK Developer Manual

voi d onUser Loggi ngMessageEvent (| ogMessage, | ogLevel, | ogChannel, | ogl D, | ogTi me, com
pl eteLogString);

const char* | ogMessage;

i nt |oglLevel;

const char* | ogChannel;

ui nt 64 | ogl D;

const char* | ogTi ne;

const char* conpl etelLogStri ng;

* | ogMessage
Actual log message text.

e | ogLevel

Severity of log message, defined by the enum LogLevel.

enum LoglLevel {
LogLevel CRITICAL = 0, //these nessages stop the program

LogLevel _ERROR, /leverything that is really bad, but not so bad we need to shut down
LogLevel _WARNI NG, /1 everything that *m ght* be bad

LogLevel _DEBUG, /loutput that mght help find a problem

LogLevel _I NFQ, /linformational output, like "starting database version x.y.z"
LogLevel _DEVEL /] devel oper only output (will not be displayed in rel ease node)

}
Notethat only |og messages of alevel higher thanthe oneconfiguredwitht s3ser ver _set LogVer bosi t y will appear.
* | ogChannel
Optional custom text to categorize the message channel.
* logl D
Virtual server ID identifying the current virtual server when using multiple connections.
e | ogTi ne
String with date and time when the log message occured.
e conpl eteLogString

Provides a verbose log message including all previous parameters for convinience.

A client connected to this server starts or stops talking:
void onCientStart Tal ki ngEvent (serverl D, clientlD);

ui nt 64 serverl D;
anyl D clientlD;

voi d onC i ent St opTal ki ngEvent (serverI D, clientlD);

45



TeamSpeak 3 Server
SDK Developer Manual

ui nt 64 serverl D;
anyl D clientlD;

e serverl D
The ID of the server which sent the event.
e clientID

ID of the client who starts or stops talking

If required, the raw voice data can be caught by the server to implement server-side voice recording. Whenever aclient is
sending voice data, the following function is called:

voi d onVoi ceDat aEvent (serverI D, clientlD, voiceData, voiceDataSi ze, frequency);

ui nt 64 serverl D,
anyl D clientlD;
unsi gned char* voi ceDat a;
unsi gned int voi ceDat aSi ze;
unsi gned int frequency;
e serverlD
The ID of the server which sent the event.
e clientlD
ID of the client who sent the voice data.

* voi ceDat a

Buffer containing the voice data. Format is 16 bit mono.

Caution
A The buffer must not be freed.
* voi ceDat aSi ze
Size of thevoi ceDat a buffer.

« frequency

Frequency of the voice data.

E Note
This event is aways fired, even if the client is the only user in a channel. So clients “talking to themselves’
will also be recorded.

46



TeamSpeak 3 Server
SDK Developer Manual

If server-side recording is not required, don't implement this callback.

The following event is called when alicense error occurs, like for example missing license file, expired license, starting too
many virtual serversetc. Instead of shutting down the whole process by throwing acritical error in the Server Lib, this callback
allows you to handle the issue gracefully and keep your application running.

voi d onAccounti ngErrorEvent (server| D, errorCode);

ui nt 64 serverlD;
unsi gned int errorCode;

e serverlD

The ID of the virtual server on which the license error occured. This virtual server will be automatically shutdown, other
virtual servers keep running.

If server| D is zero, al virtual servers are affected and have been shutdown. In this case you might want to call
t s3server _destroyServerLi b to clean up resources.

» error Code

Code of the occured error. Uset s3ser ver _get d obal Err or Message to convert to a message string.

Custom encryption

As an optional feature, the TeamSpeak 3 SDK allows users to implement custom encryption and decryption for al network
traffic. Custom encryption replaces the default AES encryption implemented by the TeamSpeak 3 SDK. A possible reason to
apply own encryption might be to make ones TeamSpeak 3 client/server incompatible to other SDK implementations.

Custom encryption must be implemented the same way in both the client and server.

E Note
If you do not want to use this feature, just don't implement the two encryption callbacks.

To encrypt outgoing data, implement the callback:
voi d onCust onPacket Encr ypt Event (dat aToSend, sizeO Data);

char** dataToSend;
unsi gned int* sizeO Dat a;

» dataToSend
Pointer to an array with the outgoing data to be encrypted.

Apply your custom encryption to the data array. If the encrypted datais smaller than sizeOf Data, write your encrypted data
into the existing memory of dataToSend. If your encrypted data is larger, you need to allocate memory and redirect the

47



TeamSpeak 3 Server
SDK Developer Manual

pointer dataToSend. Y ou need to take care of freeing your own allocated memory yourself. The memory allocated by the
SDK, to which dataToSend is originally pointing to, must not be freed.

e sjzeCf Dat a

Pointer to an integer value containing the size of the data array.

To decrypt incoming data, implement the callback:
voi d onCust onPacket Decr ypt Event (dat aRecei ved, dat aRecei vedSi ze);

char** dat aRecei ved;
unsi gned i nt* dat aRecei vedSi ze;

» dat aRecei ved
Pointer to an array with the received data to be decrypted.

Apply your custom decryptionto thedataarray. If the decrypted datais smaller than dataReceivedSize, write your decrypted
datainto the existing memory of dataReceived. If your decrypted datais larger, you need to allocate memory and redirect
the pointer dataReceived. Y ou need to take care of freeing your own allocated memory yourself. The memory allocated by
the SDK, to which dataReceived is originally pointing to, must not be freed.

+ dat aRecei vedSi ze
Pointer to an integer value containing the size of the data array.

Example code implementing a very simple XOR custom encryption and decryption (also see the SDK examples):

voi d onCust onPacket Encrypt Event (char** dat aToSend, unsigned int* sizeO Data) {
unsigned int i;
for(i =0; i < *sizeOData; i++) {
(*dataToSend)[i] ~= CUSTOM CRYPT_KEY;
}
}

voi d onCust onPacket Decrypt Event (char** dat aRecei ved, unsigned int* dataRecei vedSi ze) {
unsigned int i;
for(i = 0; i < *dataReceivedSi ze; i++) {
(*dat aRecei ved) [i] ~= CUSTOM CRYPT_KEY;
}
}

Custom passwords

The TeamSpeak SDK hasthe optional ability to do custom password handling. Thisallowsthe possibility to check TeamSpeak
server and channel passwords against an outside datasources, like LDAP or other databases.

To implement custom password, both server and client need to add custom callbacks, which will be spontaneously called
whenever a password check is donein TeamSpeak. The SDK developer can implement own checks to validate the password
instead of using the TeamSpeak built-in mechanism.

48



TeamSpeak 3 Server
SDK Developer Manual

Both Server and Client Lib can implement the following callback to encrypt a user password. This function is called in the
Server Lib when avirtual server or channel password are set.

This can be used to hash the password in the same way it is hashed in the outside data store. Or just copy the password to
send the clear text to the server.

voi d ond i ent Passwor dEncrypt (serverl D, plaintext, encryptedText, encryptedTextByte-
Si ze);

ui nt 64 serverlD;
const char* plaintext;
char* encryptedText;
i nt encrypt edText ByteSi ze;
e serverlD
ID of the server the password call occured
* pl ai nt ext
The plaintext password

e encrypt edText

Fill with your custom encrypted password. Must be a O-terminated string with a size not larger than encr ypt ed-
Text Byt eSi ze.

e encrypt edText Byt eSi ze

Size of the buffer pointed to by encr ypt edText .

Implement this callback in the server to check the password provided when a client connects to this server against an outside
database. The callback is called whenever a password check if performed, even if no password is set.

unsi gned i nt onCust onfSer ver Passwor dCheck(serverI D, client, password);

ui nt 64 serverl D,
const struct CientMni Export* client;
const char* password;

e serverlD

ID of the server on which a client password is checked when the client connects to this server
e client

Identifies the connecting client
* password

Password the client isusing. This parameter isan empty string ("") if no password is set.

49



TeamSpeak 3 Server
SDK Developer Manual

The function should return ERROR_ok if the password is verified, ERROR _ser ver _i nval i d_passwor d if not verified
or ERROR_i nval i d_par amif the password isin aninvalid form.

Implement this callback in the server to check the password provided when a client enters a password-protected channel
against an outside database. The callback is called whenever a password check if performed, even if no password is set.

unsi gned i nt onCust ontChannel Passwor dCheck(server| D, client, password);

ui nt 64 serverlD;
const struct dientM ni Export* client;
const char* password;

* serverlD

ID of the server on which aclient password is checked when the client enters a password-protected channel
* client

Identifies the client

e password

Password the client isusing. This parameter is an empty string ("") if no password is set.

The function should return ERROR_ok if the password is verified, ERROR_ser ver _i nval i d_passwor d if not verified
or ERROR i nval i d_par amif the password isin aninvalid form.

Custom permissions

The TeamSpeak SDK offersan optional custom permission system, with which SDK users can gain more control over allowed
user actions on a TeamSpeak server. The custom permissions system is implemented in the Server Lib by adding callback
functions which will be called, if implemented, when a certain user action occurs. In this callback the developer can alow or
deny the action. If a callback is not implemented, the action will be allowed by default.

The callbacks should return ERROR_ok to allowe the action or ERROR_per i ssi on to deny it.

Example code to check if aclient can connect to the server:

/1 Create the function pointer passed to ts3server_initServerLib
funcs. pernC i ent CanConnect = onPernC i ent CanConnect;

/1 Custom cal | back
unsi gned i nt onPernCl i ent CanConnect (ui nt 64 serverl D, const struct CientMni Export* client) {
/] Forbid client with nickname "client" to connect
if(strcmp(client->nicknanme, "client") == 0) {
return ERROR permissions; // Deny

}
return ERROR ok; // Al ow
}

Please seetheser ver _per i ssi ons example for ademonstration of this mechanism.

50



TeamSpeak 3 Server
SDK Developer Manual

Control if aclient can connect to the server:
unsi gned int pernCientCanConnect(serverl D, client);

ui nt 64 serverl D,
const struct CientM ni Export* client;

Control if aclient can access channel descriptions:
unsi gned i nt pernCient CanGet Channel Descri ption(serverlD, client);

ui nt 64 serverlD;
const struct dientMniExport* client;

Control if aupdating aclient variable is allowed:
unsi gned int pernClientUpdate(serverlD, clientlD, variables);

ui nt 64 serverlD;
anylD clientlD
struct Vari abl esExport* vari abl es;

Contral if kicking a client from a channel is allowed:

unsi gned i nt pernClientKi ckFronChannel (serverlI D, client, toKi ckCount, toKickdients,
reasonText);

ui nt 64 serverlD;

const struct dientM ni Export* client;
i nt toKi ckCount;

struct ClientMni Export* toKickdients;
const char* reasonText;

Control if kicking aclient from the server is allowed:

unsi gned int pernCientKi ckFronServer (serverl D, client, toKickCount, toKickdients,
reasonText);

ui nt 64 serverl D,

const struct CientM ni Export* client;
i nt toKickCount;

struct CientMni Export* toKickdients;
const char* reasonText;

51



TeamSpeak 3 Server
SDK Developer Manual

Control if moving aclient to achannel is allowed:

unsi gned i nt pernClient Move(serverl D, client, toMoveCount, toMoved i ents, newChannel,
reasonText);

ui nt 64 serverl D,

const struct CientM ni Export* client;
int toMoveCount;

struct ClientM ni Export* toMveC ients;
ui nt 64 newChannel ;

const char* reasonText;

Control if moving achannel is allowed:
unsi gned i nt pernChannel Move(serverl D, client, newChannel, newParent Channel | D);

ui nt 64 serverl D,

const struct CientMni Export* client;
ui nt 64 newChannel ;

ui nt 64 newPar ent Channel | D;

Control if sending atext message is allowed:

unsi gned int pernBSendText Message(serverl D, client, targetMde, targetdientO Chan-
nel, textMessage);

ui nt 64 serverlD;

const struct CientM ni Export* client;
anyl D t ar get Mode;

ui nt 64 targetdient O Channel ;

const char* textMessage;

Control if requesting the server connection info is allowed:
unsi gned i nt pernBerver Request Connecti onl nfo(serverlD, client);

ui nt 64 serverl D,
const struct CientM ni Export* client;

Control if requesting the client connection info is allowed:
unsi gned i nt pernBendConnectionl nfo(serverlD, client, mayView pPort, targetdient);

ui nt 64 serverlD;
const struct CientMni Export* client;
i nt* mayVi ew pPort;

52



TeamSpeak 3 Server
SDK Developer Manual

const struct CientMniExport* targetCient;

Control if creating a channel with the given channel variablesis allowed:
unsi gned int pernChannel Create(serverl D, client, parentChannel D, variables);

ui nt 64 serverlD;

const struct dientMniExport* client;
ui nt 64 par ent Channel | D

struct Vari abl esExport* vari abl es;

Control if editing the given channel variables of a channel is allowed:
unsi gned int pernChannel Edit (serverl D, client, channel D, variables);

ui nt 64 serverl D,

const struct CientMni Export* client;
ui nt 64 channel | D;

struct Vari abl esExport* vari abl es;

Control if deleting achannel is allowed:
unsi gned i nt pernChannel Del ete(serverl D, client, channelID);

ui nt 64 serverl D,
const struct CientMni Export* client;
ui nt 64 channel | D;

Control if subscribing a channel is allowed:
unsi gned i nt pernChannel Subscri be(serverl D, client, channel ID);

ui nt 64 serverl D,
const struct CientMni Export* client;
ui nt 64 channel | D;

Security salts and hashes

As an optional security feature, the TeamSpeak SDK offers to restrict access of clients to specific channels by using a salt
and hash mechanism. The motivation here is to enforce clients to use a specific identity, nickname and metadata when they
connect to the TeamSpeak server.

In the server, a security salt is created over a clients unique data by callingt s3server _createSecuritySalt. This
created salt is then attached to a channel during channel creation or by editing existing channels by setting the channel
variable CHANNEL _SECURI TY_SALT. When this channel variable is set, when a client enters the channel, the clients

53



TeamSpeak 3 Server
SDK Developer Manual

CLI ENT_SECURI TY_HASH variable is checked against the clients data (unique id, optionally nickname and meta_data)
using the salt. If the hash is not correct, the client is not allowed to enter the channel.

The clients hash value is calculated by the server calling t s3server _cal cul at eSecurit yHash. This security
hash has to be transmitted to the client by ways outside of the TeamSpeak SDK. The client will set the hash in its
CLI ENT_SECURI TY_HASH variable.

To create a security salt for the channel, call:

unsigned int ts3server createSecuritySalt(options, salt, saltByteSize, securi-
tySalt);

i nt options;
voi d* salt;

i nt saltByteSize;
char** securitySalt;

e options

Combination of (OR'ed)

SECURI TY_SALT_CHECK_NI CKNAME -> means ni cknane will be used in security hash
SECURI TY_SALT_CHECK_META DATA -> means netadata will be used in security hash

+ salt

Pointer to random data. This should be good random data, like cryptographic random.
* sal t Byt eSi ze

Size of the random data. Larger is better.
e securitySalt

Pointer that receives the salt. Needs to be freed.

To create a security hash for aclient, call:

unsi gned int ts3server_cal cul ateSecurityHash(securitySalt, clientUniqueldentifier,
clientN ckName, clientMetaData, securityHash);

const char* securitySalt;

const char* clientUniqueldentifier;
const char* clientN ckNane;

const char* client MetabDat a;

char** securityHash;

e securitySalt




TeamSpeak 3 Server
SDK Developer Manual

The channels salt data.
e clientUniqueldentifier
Unique identifier of the client we want to calculate the hash for.
* clientN ckNane
Clients nickname
* client MetabDat a
Clients meta data
e securityHash

Pointer that receives the hash. Needs to be freed.

Miscellaneous functions

Freeing memory

Memory dynamically allocated in the Server Lib needsto be released with:
unsi gned int ts3server_ freeMenory(pointer);

voi d* pointer;

e pointer
Address of the variable to be released.

Example:
char* version;
i f(ts3server_get ServerLi bVersion(&ersion) == ERROR ok) {

printf("Version: %\n", version);
ts3server_freeMenory(version);

2 | mportant

Memory must not be released if the function, which dynamically allocated the memory, returned an error. In that
case, the result is undefined and not initialized, so freeing the memory might crash the application.

Setting the log level

The severity of log messages that are passed to the callback onUser Loggi ngMessageEvent can be configured with:

55



TeamSpeak 3 Server
SDK Developer Manual

unsi gned int ts3server_setLogVerbosity(logVerbosity);

enum LogLevel | ogVerbosity;

e logVerbosity
Only messages with aLogLevel equal or higher than | ogVer bosi t y will be sent to the callback.
The default valueisLoglLevel _DEVEL.

Returns ERROR_ok on success, otherwise an error code asdefined in publ i c_errors. h.

For example, after calling
t s3server _set LogVerbosi ty(LogLevel _ERROR);

only log messages of level LogLevel _ERROR and LogLevel _CRI TI CAL will be passed to onUser Loggi ngMes-
sageEvent.

Disabling protocol commands

SDK users can opt to disable specific protocol commandsin a TeamSpeak server instance, so clients are unable to call these
commands. The server can till issue disabled commands by calling the appropriate Server Lib functions.

Thisisan optional features. If certain commands are not disabled specifically, all commands are enabled by default.

For example, a SDK user may decide that clients should not be able to del ete channels on a TeamSpeak server and implement
this action in the Server Lib only. So he disabled the CLI ENT_COVMAND r equest Channel Del et e protocol command
inthe server and all client callstot s3cl i ent _r equest Channel Del et e will be rgjected by the server on the protocol
level.

To disable specific protocol commands call:
unsi gned int ts3server_di sabl ed i ent Conmand(cli ent Comrand);

int clientCommuand;

e cli ent Command

The command to disable in the server. Can be one of the following:

enum C i ent Command {
CLI ENT_COWMAND r equest Connecti onl nfo
CLI ENT_COWVAND r equest Cl i ent Move
CLI ENT_COMMAND r equest XXMut eCl i ent s
CLI ENT_COMMAND r equest O i ent Ki ckFr onXXX
CLI ENT_COWAND _f | ushChannel Creati on
CLI ENT_COWMAND _f | ushChannel Updat es
CLI ENT_COWMAND r equest Channel Move
CLI ENT_COWAND r equest Channel Del et e
CLI ENT_COWMMAND _r equest Channel Descri ption

-> disabl e muting/unnmuting clients

-> disabl e kick requests fromclients
-> di sabl e creating new channel s

-> di sabl es editing(changi ng) channe
-> di shal e novi ng channel s around

-> di sabl e del eting channel s

-> di sabl e getting channel description

I T T TR TR TR TR TR
LSNorLMNEO

56

-> di sabl es any channel sw tching requested by the client.

(ser



TeamSpeak 3 Server
SDK Developer Manual

CLI ENT_COMVAND _r equest Channel XXSubscri beXXX 9, -> disable subscriptions

CLI ENT_COWVAND r equest Server Connectionlnfo = 10,
CLI ENT_COWAND r equest SendXXXText Msg = 11, -> disable sending text nessages
CLI ENT_COWVAND fil etransfers = 12, -> disable client filetransfer comands

CL| ENT_COMVAND ENDMARKER
}s

If you want to disable multiple commands, call this function multiple times with one command per call.

There is no enable command. We recommend doing this call soon after callingt s3ser ver _i ni t Server Li b.

Filetransfer

The TeamSpeak SDK includes the ahbility to support filetransfer, like the regular TeamSpeak server and client offer. The
server can function as a file storage, which can be accessed by clients who can up- and download files. Files are stored on
the filesystem where the server is running.

General filetransfer definitions and structures are described in the headers public_sdk _definitions. h and
server _conmands. h, which arerequired to include if you want to use the filetransfer feature.

In addition to the standard virtual server properties there are extented filetransfer properties available.

Filetransfer bandwidth statistics can be queried with specia filetransfer connection properties.

The availability of filetransfer in the TeamSpeak server can be controlled by the following function, which should be called
right after t s3server _i ni t Ser ver Li b to initialize filetransfer.

unsi gned i nt ts3server_enabl eFi | eManager (fil ebase, ips, port, downl oadBandwi t dh, up-
| oadBandwi dt h) ;

const char* fil ebase;
const char** ips;

int port;

ui nt 64 downl cadBandwi t dh;
ui nt 64 upl oadBandwi dt h;

» fil ebase
The base folder where to save thefilesto. If thisisinitalized to "sdk_files', we would get the following directory structure:
 All filesfor virtual server withid 1 will bein “sdk_files/virtualserver _1".
» Filesin channel 1in virtual server 1 will bein “sdk_files/virtualserver _1/channel_1"

» Thesedirectorieswill automatically be created by the server if they do not exist. It isthe responsibility of the application
(not serverlib) to delete these directories when they are no longer needed.

* ips

Array of |Ps (IPv4 and | Pv6 are supported) to bind to. This can be NULL, in which case we bind to “0.0.0.0, ::". Otherwise
pass a NUL L-terminated array of strings (1Ps, not domainnames).

57



TeamSpeak 3 Server
SDK Developer Manual

e port

Specifies the TCP port used for filetransfer. Free to choose between 1 and 65536. TeamSpeak defaults to 30033.
* downl oadBandwi dt h

Download limit in bytes/'s or BANDW DTH_LI M T_UNLI M TED
e upl oadBandwi dt h

Upload limit in bytes/s or BANDW DTH_LI M T_UNLI M TED

Callbacks

The serverlib notifies about ongoing filetransfers with an event, which is called everytime a file upload or download has
finished:

voi d onFil eTransfer Event (dat a) ;

const struct FileTransferCall backExport* data;

+ data
Data structure containing values describing the finished filetransfer event:
e clientlD
ID of the client who triggerd the filetransfer
* transferlD
Thelocal filetransfer ID
* renoteTransferl D
The remote filetransfer ID
e status

Info on the state of the transfer, defined by the struct Fi | eTr ansf er St at e:
enum Fil eTransferState {
FI LETRANSFER | NI TI ALI SING = 0,
FI LETRANSFER_ACTI VE,
FI LETRANSFER_FI NI SHED,
b
* statusMessage
Info on the state in text form

e renotefil eSi ze

58



TeamSpeak 3 Server
SDK Developer Manual

Size of the transfer file
* bytes

Transferred bytes
* i sSender

True, if the server is sending thefile, falseif the server isreceiving the file.

To changethefilename or path of afiletransfer, the following callback can beimplemented. Thisis optional, when modifying
path or nameisnot required, simply do not implement this callback. When thisfunction is called, default path and name values
are aready filled in the passed structs.

unsi gned int onTransforntil ePath(serverl D, invokerClientlD, original, result);

ui nt 64 serverlD;

anyl D i nvokerd i ent| D

const struct TransfornFil ePat hExport* origi nal;
struct TransfornFil ePat hExport Ret urns* result;

e serverlD

ID of the virtual server on which the event is called
* invokerCientlD

ID of the client which invoked the file transfer
e original

Struct TransformFilePathExport, defining the origina file transfer path and name:

struct TransfornFil ePat hExport {
ui nt 64 channel ;
const char* filenaneg;
int action;
int transformedFi| eNaneMaxSi ze;
i nt channel Pat hMaxSi ze;

» channel

ChannelID if appropriate (not for FT_I NI T_SERVER, where it defaultsto 0)
o fil ename

Original file name
* action

Event was called for which action? (See below)

59



TeamSpeak 3 Server
SDK Developer Manual

» transfornmedFi | eNaneMaxSi ze
Maximum size of transformedFileName (see result param)
» channel Pat hMaxSi ze
Maximum size of channel Path (see result param)
* result

Struct TransformFilePathExportReturns, target struct where the file transfer path or name can be changed:

struct TransfornFil ePat hExport Returns {
char* transfornedFi | eNane;
char* channel Pat h;
int |ogFileAction;

e transf or medFi | eNane

Pointer to string where the transformed filename is located. To change it, overwrite the content of where the pointer
points, uptoori gi nal - >t r ansf or medFi | eNaneMaxSi ze bytes.

e channel Pat h

Pointer to string where the channel path is located. To change it, overwrite the content of where the pointer points, up
toori gi nal - >channel Pat hMaxSi ze bytes.

* logFil eAction

Setto Oto not log to logfile, or 1tologtofile. VI RTUALSERVER _LOG _FI LETRANSFER must also be true for logging
to happen (see struct Virtual ServerPropertiesSDK in publ i c_sdk_def i ni ti ons. h).

Return with ERROR_ok if there are no errors, or return an other error value.

When implementing this callback, depending on the state in or i gi nal - >act i on different fieldsin ther esul t struct
can be modified.

Possible statesfor or i gi nal - >acti on are:
e FT_I NI T_SERVER

When the virtual server is being is being created. The r esul t - >channel Pat h can be changed to create a different
folder for the virtual server.

« FT_I NI T_CHANNEL

When a channel is being is being created. Ther esul t - >channel Pat h can be changed to create a different folder for
the channel.

* FT_UPLOAD

When afile is being uploaded. Herer esul t - >channel Pat h and/or r esul t - >t r ansf or nedFi | eName can be
changed.

* FT_DOWNNLOAD

60



TeamSpeak 3 Server
SDK Developer Manual

When afile is being downloaded. Herer esul t - >channel Pat h and/or r esul t - >t r ansf or medFi | eNane can
be changed.

« FT_DELETE

When a file is being deleted. Here r esul t - >channel Pat h and/or r esul t - >t r ansf or medFi | eNane can be
changed.

* FT_CREATED R

When afolder is being created. Herer esul t - >channel Pat h and/or r esul t - >t r ansf or medFi | eNane can be
changed

 FT_RENAME

When a file/folder is being renamed. This callback will be called 2 times, first for old, then for new name. Here r e-
sul t - >channel Pat h and/or r esul t - >t r ansf or nedFi | eName can be changed.

* FT_FILELI ST

Called when alisting of afolder isrequested. Herer esul t - >channel Pat h and/orr esul t - >t r ansf or nedFi | e-
Nane can be changed.

» FT_FI LEI NFO

Called when file info is requested. Herer esul t - >channel Pat h and/or r esul t - >t r ansf or nedFi | eNamne can
be changed.

Permissions

Thefollow callbacks can be optionally implemented to control if variousfiletransfer actionsare allowed or denied. If acallback
is not implemented, actions are allowed by default.

If you want to use these functions, include ser ver _commands. h.

Control if aclient is allowed to upload afile:
unsi gned int pernFil eTransferlnitUpl oad(serverl D, client, parans);

ui nt 64 serverlD;
const struct dientM ni Export* client;
const struct ts3sc_ftinitupl oad* parans;

e serverlD
ID of the server where the file transfer isinitiated.

e client

61



TeamSpeak 3 Server
SDK Developer Manual

Summary client info:

struct CientM ni Export {
anyl D | D
ui nt 64 channel
const char* ident;
const char* ni cknane;

}
e parans

Summary fileinfo (fileNameffileSize/channelID):

struct ts3sc_ftinitupload {
struct ts3sc_neta_ftinitupl oad m /* message neta data */
struct ts3sc_data_ftinitupl oad d; /* message data */

}s

struct ts3sc_data_ftinitupload {
const char* fileNane; /* The file nanme */

ui nt 64 fileSize; [/* The file size */

ui nt 64 channel I D; /* The channel |D where the file is to be upl oaded */

int overwite; /* Set to 1 to overwite files, O to prevent overwites */
int resune; /* Set to 1 to resune an existing upload, O to start new */

h
Return ERROR_OKif allowed or ERROR _per mi ssi ons_cl i ent _i nsuffici ent /ERROR perm ssi ons.

Control if aclient is allowed to download afile:
unsi gned int pernFil eTransferlnitDownl oad(serverl D, client, parans);

ui nt 64 serverlD;
const struct dientM ni Export* client;
const struct ts3sc_ftinitdownl oad* parans;

e serverlD

ID of the server where the file transfer isinitiated.
e client

Summary client info
e parans

Summary fileinfo (fileName/channel I D):

struct ts3sc_ftinitdownl oad {
struct ts3sc_neta_ftinitdownl oad m /* message neta data */
struct ts3sc_data_ftinitdownl oad d; /* message data */

}s

struct ts3sc_data_ftinitdownl oad {
const char* fileNanme; /* The file name */
ui nt 64 channel ID; /* The channel |ID where the file is to be downl oaded from */

62



TeamSpeak 3 Server
SDK Developer Manual

b
Return ERROR_CK if allowed or ERROR_per mi ssi ons_cl i ent _i nsuffici ent/ERROR perm ssi ons.

Control if aclient isallowed to request the file information:
unsi gned int pernFileTransferGetFilelnfo(serverlD, client, parans);
ui nt 64 serverl D,

const struct dientMni Export* client;
const struct ts3sc ftgetfileinfo* parans;

* serverlD

ID of the server where the file info request isinitiated.
e client

Summary client info
* par ans

Summary file info (fileName/channelID):

struct ts3sc_ftgetfileinfo {

struct ts3sc_neta_ftgetfileinfo m /* message neta data */

struct ts3sc_data ftgetfileinfo d; /* message data */

int r_size; /* items inr */

struct ts3sc_array_ftgetfileinfo* r; /* message repeat data */
}s
struct ts3sc_data ftgetfilelist {

ui nt 64 channel ID; /* The channel ID */

const char* path; /* The path where to get the list for */

}s

struct ts3sc_array ftgetfileinfo {
ui nt 64 channel | ; /* The channel 1D where the file is located */
const char* fileName; /* The file nane */

b
Return ERROR_Kif allowed or ERROR _per mi ssi ons_cl i ent _i nsuffi ci ent/ERROR perm ssi ons.

Control if aclient isallowed to request a directory listing:
unsi gned int pernFileTransferGetFileList(serverlD, client, parans);
ui nt 64 serverlD;

const struct dientMni Export* client;
const struct ts3sc ftgetfilelist* parans;

63



TeamSpeak 3 Server
SDK Developer Manual

* serverlD

ID of the server where thefile list request isinitiated.
e client

Summary client info
* par ans

Summary file info (path/channelID):

struct ts3sc_ftgetfilelist {
struct ts3sc_neta ftgetfilelist m /* message neta data */
struct ts3sc_data ftgetfilelist d; /* message data */

}
struct ts3sc_data _ftgetfilelist {
ui nt 64 channel I D; /* The channel D */
const char* path; /* The path where to get the list for */

}
Return ERROR_Kif allowed or ERROR _per mi ssi ons_client i nsufficient/ERROR perm ssi ons.

Control if aclient is allowed to delete one or morefiles:
unsi gned int pernFil eTransferDel eteFil e(serverlD, client, parans);

ui nt 64 serverlD;
const struct CientM ni Export* client;
const struct ts3sc_ftdeletefile* parans;

* serverlD

ID of the server where the file deletion is initiated.
e client

Summary client info
* par ans

Summary file info (channelID/array of filenames):

struct ts3sc_ftdeletefile {

struct ts3sc_neta_ftdeletefile m /* message neta data */
struct ts3sc_data_ftdeletefile d; /* message data */

int r_size; /* items inr */

struct ts3sc_array_ftdeletefile* r; /* message repeat data */

}s

struct ts3sc_data_ ftdeletefile {
uint64 channelID; /* The channel |ID where the file is to be deleted */
}s

struct ts3sc_array_ftdeletefile {




TeamSpeak 3 Server
SDK Developer Manual

const char* fileName; /* The file name to be deleted */

b
Return ERROR_OKif allowed or ERROR _per mi ssi ons_client i nsuffici ent/ERROR perm ssi ons.

Control if aclient isallowed to create a directory:
unsi gned int pernFil eTransferCreateDirectory(serverl D, client, parans);

ui nt 64 serverlD;
const struct dientM ni Export* client;
const struct ts3sc_ftcreatedir* parans;

e serverlD

ID of the server where the directory creation isinitiated.
e client

Summary client info
e parans

Summary file info (channell D/dirname):

struct ts3sc_ftcreatedir {
struct ts3sc_neta_ftcreatedir m /* message nmeta data */
struct ts3sc_data_ftcreatedir d; /* message data */

s

struct ts3sc_data_ftcreatedir {
ui nt 64 channel ID; /* The channel |ID where the file is to be upl oaded */
const char* dirnane; /* The directory nanme */

s

Return ERROR_Kif allowed or ERROR _per mi ssi ons_cl i ent _i nsuffi ci ent/ERROR perm ssi ons.

Control if aclient is allowed to rename afile:
unsi gned int pernFil eTransferRenaneFil e(serverlI D, client, parans);

ui nt 64 serverl D,
const struct CientM ni Export* client;
const struct ts3sc_ftrenanefil e* parans;

e serverlD
ID of the server where the file rename isinitiated.

e client

65



TeamSpeak 3 Server
SDK Developer Manual

Summary client info
* parans

Summary file info (fromChannell D/toChannel| D/oldFileName/newFileName). Use par ans- >m has_t oChannel | D
to check if t oChannel | Disvalid (elseit isarename in the same channel)

struct ts3sc_ftrenamefile {
struct ts3sc_neta_ftrenamefile m /* message neta data */
struct ts3sc_data_ftrenamefile d; /* message data */

}s

struct ts3sc_data_ftrenamefile {

ui nt 64 fronChannel I D, /* The channel |ID where the file is | ocated now */

ui nt 64 t oChannel | D; /* The channel ID where the file is to be noved to */
const char* ol dFi | eNane; /* The current file nane */

const char* newFil eNane; /* The new file name */

b
Return ERROR_OK if allowed or ERROR_per i ssi ons_cl i ent _i nsuf fi ci ent /ERROR_per i ssi ons.

FAQ

* | cannot start multiple server processes? | cannot start more than one virtual server?
e How can | configure the maximum number of slots?
* | get "Accounting | | virtual server id 1 isrunning el sewhere, shutting down" in the log

» How to implement a name/password authentication?

| cannot start multiple server processes? | cannot start more
than one virtual server?

Youdon't haveavalid licensekey inthe correct location. Thefilel i censekey. dat needsto beplaced inthe samedirectory
asyour server executable. If no or an invalid license key is present, the server will run with the following restrictions:

* Only one server process per machine
» Only onevirtual server per process
e Only 32 dlots

Please contact <sal es@ eanspeakusa. con about license key inquiries or to obtain avalid license.

How can | configure the maximum number of slots?

The number of dots per virtua server can be changed by setting the virtua server property
VI RTUALSERVER_MAXCLI ENTS.

Example to set 100 slots on the specified virtual server:

ts3server_set Virtual Server Vari abl eAsl nt (server| D, VI RTUALSERVER MAXCLI ENTS, 100); // Set val ue

66



TeamSpeak 3 Server
SDK Developer Manual

ts3server _flushVirtual ServerVari abl e(serverID); // Flush val ue

2 | mportant

Please note that you probably do not have unlimited slots allowed by your license, so don't set this arbitrarily.

| get "Accounting | | sid=1is running" "initializing shut-
down" in the log

This error does not occur because you are exceeding your licensed server or slot count, but rather because you are running
more than one instance of avirtual server with the same server keypair.

When creating a new virtual server, a keypair must be passedtot s3server _creat eVi rt ual Server. It isimportant
to store the used keypair and reuse it when restarting this virtual server later instead of creating a new key. See the server
sample within the SDK for an example.

However, above problem can happen if the virtual server is started with a stored keypair, then the entire folder including the
stored keypair is copied to another PC and also started there with the same key. In this case the licensing server will notice
the same key is used more than once after one hour and shutdown the most recently started server which tried to steal the
identity of an aready running server.

Thefix, in the server sample case, would beto deletethe keypair_*.txt filesfrom the copied directory before starting the second
server, that way anew key would be generated and the licensing server would see thetwo serversastwo valid different entities.
The accounting server would now only complainif the number of simultaneously running servers exceedsyour number of slots.

How to implement a name/password authentication?

Although TeamSpeak 3 offers an authentication system based on public/private keys, an often made request is to use an
additional login name/password mechanism to authenticate clients with the TeamSpeak 3 server. Here we will suggest a
possibility to implement this authentication on top of the existing public/private key mechanism.

When connecting to the TeamSpeak 3 server, a client might make use of the CLIENT_META_DATA property and fill this
with a name/password combination to let the server validate this this data in the servers onCl i ent Connect ed callback.
This callback allowsto set an error value to block this clients connection.

The client-side code:

/1 In the client, set CLIENT_META DATA before connecting
if(ts3client_setCientSelfVariableAsString(scHandl erl D, CLI ENT_META DATA, "NAME#PASSWORD') != ERROR ok) {
printf("Failed setting client neta data\n");
return;

}

/1 Call ts3client_startConnection

In the server implement the onClientConnected callback, which validates the name/password meta data and refuses the con-
nection if not validated:

voi d ond i ent Connect ed(ui nt64 serverlD, anylD clientlD, uint64 channellD, unsigned int* renmoveCientError) {
/1 Query CLI ENT_META_DATA
char* metabDat a;
if(ts3server_getdientVariabl eAsString(serverl D, clientlD, CLIENT_META DATA, &retaData) != ERROR ok) ({
printf("Failed querying client neta data\n");
*renoveCd ientError = ERROR client_not_logged_in; // Block client
return;

67



TeamSpeak 3 Server
SDK Developer Manual

}

/1 Validate nane/ password
i f(!validat eNamePassword(netabData)) {
*renoved ientError = ERROR client_not_logged_in; // Block client
}
/1 Cient is allowed to connect if renoveClientError is not changed
/1 (defaults is ERROR ok)
ts3server_freeMenory(netabData); // Release previously allocated nenory

68



TeamSpeak 3 Server
SDK Developer Manual

Index

B
bandwidth, 34

C

callback, 5
onFileTransferEvent, 58
onTransformFilePath, 59
permFileTransferCreateDirectory, 65
permFileTransferDeleteFile, 64
permFileTransferGetFilelnfo, 63
permFileTransferGetFileList, 63
permFileTransferlnitDownload, 62
permFileTransferInitUpload, 61
permFileTransferRenameFile, 65
ts3server_enableFileManager, 57

calling convention, 3

connection information, 34

E

enums
Channel Properties, 26
ClientProperties, 21
CodecEncryptionMode, 32
LogLevdl, 45
LogType, 5, 44
Virtual ServerProperties, 31

events
onAccountingErrorEvent, 47
onChannel Created, 42
onChannel Deleted, 43
onChannel Edited, 43
onChannel TextM essageEvent, 44
onClientConnected, 41
onClientDisconnected, 42
onClientMoved, 42
onClientPasswordEncrypt, 49
onClientStartTalkingEvent, 45
onClientStopTakingEvent, 46
onCustomChannel PasswordCheck, 50
onCustomPacketDecryptEvent, 48
onCustomPacketEncryptEvent, 47
onCustomServerPasswordCheck, 49
onServerTextM essageEvent, 44
onUserL oggingM essageEvent, 45
onVoiceDataEvent, 46
permChannel Create, 53
permChannel Delete, 53
permChannel Edit, 53

69



TeamSpeak 3 Server
SDK Developer Manual

permChannelMove, 52

permChannel Subscribe, 53
permClientCanConnect, 51
permClientCanGetChannel Description, 51
permClientKickFromChannel, 51
permClientKickFromServer, 51
permClientMove, 52
permClientUpdate, 51
permSendConnectioninfo, 53
permSendTextMessage, 52
permServerRequestConnectioninfo, 52

F

FAQ, 66

Filetransfer, 57

functions
ts3server_channelDelete, 39
ts3server_channelMove, 40
ts3server_clientMove, 40
ts3server_createChannel, 38
ts3server_createSecurityHash, 54
ts3server_createSecuritySalt, 54
ts3server_createVirtual Server, 12
ts3server_createVirtual Server2, 20
ts3server_destroyServerLib, 7
ts3server_disableClientCommand, 56
ts3server_flushChannel Creation, 36
ts3server_flushChannelVariable, 30
ts3server_flushClientVariable, 24
ts3server_flushVirtual ServerVariable, 34
ts3server_freeMemory, 55
ts3server_getChannelClientList, 10
ts3server_getChannel CreationParamsVariables, 19, 38
ts3server_getChannelList, 10
ts3server_getChannel OfClient, 11
ts3server_getChannel VariableAsint, 26
ts3server_getChannel VariableAsString, 26
ts3server_getClientList, 9
ts3server_getClientVariableAsint, 20
ts3server_getClientVariableAsString, 21
ts3server_getGlobal ErrorMessage, 8
ts3server_getParentChannel Of Channel, 11
ts3server_getServerLibVersion, 6
ts3server_getServerLibVersionNumber, 7
ts3server_getVariableAsint, 17
ts3server_getVariableAsString, 17
ts3server_getVariableAsUInt64, 17
ts3server_getVirtual ServerConnectionVariableAsDouble, 35
ts3server_getVirtual ServerConnectionVariableAsUInt64, 35
ts3server_getVirtual ServerCreationParamsChannel CreationParams, 18
ts3server_getVirtual ServerCreationParamsVariables, 16
ts3server_getVirtual ServerKeyPair, 14

70



TeamSpeak 3 Server
SDK Developer Manual

ts3server_getVirtual ServerList, 9
ts3server_getVirtual ServerVariableAsint, 30
ts3server_getVirtual ServerVariableAsString, 31
ts3server_initServerLib, 4
ts3server_makeChannel CreationParams, 37
ts3server_makeVirtual ServerCreationParams, 15
ts3server_setChannel CreationParams, 19, 37
ts3server_setChannelVariableAsint, 29
ts3server_setChannelVariableAsString, 29
ts3server_setClientVariableAsint, 24
ts3server_setClientVariableAsString, 24
ts3server_setClientWhisperList, 25
ts3server_setl ogVerbosity, 56
ts3server_setVariableAsint, 17
ts3server_setVariableAsString, 17
ts3server_setVariableAsUInt64, 17
ts3server_setVirtual ServerCreationParams, 15
ts3server_setVirtua ServerVariableAslint, 33
ts3server_setVirtual ServerVariableAsString, 33
ts3server_stopVirtual Server, 14

L

license error, 47
license key, 4, 66
Linux, 3

M
Macintosh, 3

S

slots, 66
system requirements, 3

W
Windows, 3

71



	TeamSpeak 3 Server SDK Developer Manual
	Table of Contents
	Introduction
	System requirements
	Usage

	Calling Server lib functions
	Initializing
	The callback mechanism

	Querying the library version
	Shutting down
	Error handling
	Query virtual servers, clients and channels
	Create and stop virtual servers
	Alternative way to create virtual servers

	Retrieve and store information
	Client information
	Query client information
	Setting client information
	Whisper lists

	Channel information
	Query channel information
	Setting channel information

	Server information
	Query server information
	Setting server information

	Bandwidth information

	Channel and client manipulation
	Creating a new channel
	Alternative way to create a new channel

	Deleting a channel
	Moving a channel
	Moving clients

	Events
	Custom encryption
	Custom passwords
	Custom permissions

	Security salts and hashes
	Miscellaneous functions
	Freeing memory
	Setting the log level
	Disabling protocol commands

	Filetransfer
	Callbacks
	Permissions

	FAQ
	I cannot start multiple server processes? I cannot start more than one virtual server?
	How can I configure the maximum number of slots?
	I get "Accounting | | sid=1 is running" "initializing shutdown" in the log
	How to implement a name/password authentication?

	Index

